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ABSTRACT
Photos of faces captured in unconstrained environments, such as
large crowds, still constitute challenges for current face recognition
approaches as often faces are occluded by objects or people in the
foreground. However, few studies have addressed the task of recog-
nizing partial faces. In this paper, we propose a novel approach to
partial face recognition capable of recognizing faces with different
occluded areas. We achieve this by combining attentional pooling
of a ResNet’s intermediate feature maps with a separate aggregation
module. We further adapt common losses to partial faces in order to
ensure that the attention maps are diverse and handle occluded parts.
Our thorough analysis demonstrates that we outperform all base-
lines under multiple benchmark protocols, including naturally and
synthetically occluded partial faces. This suggests that our method
successfully focuses on the relevant parts of the occluded face.

Index Terms— Partial Face Recognition, Biometrics, Attention

1. INTRODUCTION

State-of-the-art Face Recognition (FR) approaches [1–4] achieve
satisfying performance under controlled imaging conditions, such
as frontal faces, manually aligned images, regular expressions, and
consistent illuminations. However, these requirements are often not
fulfilled in many practical scenarios due to ineffectual control over
the subjects and environments, resulting in partially visible faces.
As illustrated in Figure 1, there are multiple examples for partial
faces occurring in real-life scenarios: faces with extreme head poses
causing face parts to become invisible; faces with intense illumi-
nations or saturations provoking vanishing face details; faces in
the background being obstructed by foreground objects or persons;
faces at the edge of the image being cut off.

After face detection, typical FR approaches for holistic faces use
Convolutional Neural Networks (CNNs) to embed faces into a deep
feature space, in which face pairs are considered genuine if their
feature distance is lower than a threshold. For partial faces, how-
ever, partial face detection algorithms [6–8] are required to detect
face parts even when the face is occluded, yielding a face with an
arbitrary resolution. Therefore, partial FR approaches need to be
capable of either handling arbitrary input resolutions [9–13] or tol-
erate that the information is only present in a small area within the
input [14, 15]. Moreover, to compare partial with holistic faces, it is
desirable to design a network performing well for both faces.
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Fig. 1. Examples of partial faces ocurring in the LFW dataset [5].
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Fig. 2. Overview of our approach for partial FR.

In our work, we propose an approach to partial FR using fixed-
size images. The extracted face patches are normalized and zero-
padded to match the input resolution. Hence, the face patch is not
deformed yet centered, which causes the loss of any spatial informa-
tion. To compensate for this information loss, we predict attention
maps capable of focusing on their respective region of interest in-
dependent of their positions. Using attentional pooling followed by
aggregation, we obtain a single feature vector robust against the lack
of spatial information in face patches.

The contributions of our work can be summed up as follows:

• On the example of a ResNet [16], we propose an extension
that utilizes attentional pooling with an aggregation network
and is trained with two popular losses adapted for partial FR.

• In our exhaustive analysis covering multiple partial FR pro-
tocols, we show that our modifications substantially improve
recognition performance and outperform the baselines for
synthetically and naturally occluded partial faces.

2. RELATED WORK

Traditional partial FR approaches can be divided into region-based
[17–19] and keypoint-based [9–11] approaches. Region-based ap-
proaches extract features from face patches, such as eyes, ears and
nose [17], face halves [18], or the periocular region [19]. Keypoint-
based approaches compute descriptors from face patches of arbitrary
size. While Liao et al. [9] utilized Garbor Ternary Patterns as a de-
scriptor and applied a sparse representation-based classification al-
gorithm, Hu et al. [10] focused on SIFT features. Apart from SIFT,
Weng et al. [11] also incorporated SURF and scale-invariant local
binary pattern descriptors.

With emerging deep learning algorithms, He et al. [12] proposed
a multiscale region-based CNN, which extracts a feature for every
face patch at different scales. In order to cope with face patches of
arbitrary size, He et al. [13] used dynamic feature learning to match
local feature maps, which were obtained by a fully convolutional
neural network. However, all previous approaches require overlap-
ping patches during the matching. Thus, a cross-matching of partial
faces of, e.g., the eye with the mouth region, is not possible.

In order to obtain a global face representation and focus on non-
occluded face areas, utilizing a siamese network together with a pre-
dicted occlusion mask [14] or attention map [15] was proposed.
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Fig. 3. Our proposed partial FR approach: A modified ResNet extracts feature maps F and attention maps A. The re-calibrated attention
maps Ã are used to pool F into K feature descriptors vk. In the Aggregate module, K independent fully connected layers transform every
vk into a joint feature space, in which the feature vectors fk are averaged to obtain the final feature f .

3. METHODOLOGY

3.1. Network Architecture

Figure 3 depicts our partial FR approach divided into three modules:
Extract, Attend, and Aggregate. The Extract module extracts feature
maps F ∈ R20×20×1024 and attention maps A ∈ R20×20×K from
the input image with K denoting the number of attention maps. In
the Attend module, the feature maps are pooled into K intermediate
feature vectors using re-calibrated attention maps. The aggregation
module maps these intermediate feature vectors into a joint feature
space, in which the final feature vector f ∈ R256 is obtained.

3.1.1. Extract

Inspired by [20], we utilize a truncated ResNet-50 architecture [16],
which is concluded after the fourth block. Hence, we only perform
three spatial downsamplings and obtain feature maps of size 20×20,
in which the regions are still well distinguishable. Unlike [20], we
separate the ResNet after the third block to allow both branches to
focus on their respective tasks. While we directly obtain F after
the fourth ResNet block, we add an extra 1 × 1 convolution with
ReLU [21] activation function to obtain A. The detailed architecture
is summed up in Table 1.

The generated attention maps should fulfill the following two
key attributes: 1) Attention maps should be mutually exclusive, i.e.,
different attention maps focus on different regions of a face image;

Table 1. The architecture of the Extract module. Residual blocks
are shown in brackets, with the numbers of blocks stacked.

Block Size Layer

1 802 7×7, 64, stride 2

2 402

3×3 max pool, stride 2[
1×1, 64
3×3, 64
1×1, 256

]
×3

3 202

[
1×1, 128
3×3, 128
1×1, 512

]
×4

4 202

[
1×1, 256
3×3, 256
1×1, 1024

]
×6

[
1×1, 256
3×3, 256
1×1, 1024

]
×6

1×1, K

2) The attention maps’ activations should correlate with their respec-
tive region’s visibility.

Notably, the implicitly-defined attention map activations do not
necessarily follow the same intuition as human-defined facial land-
marks such as eyes or nose.

3.1.2. Attend

As in [20], the attention maps A need to be re-calibrated. Xie et
al. [20] proposed the attentional pooling for set-based FR normal-
izing A separately over all images within a set, thereby ensuring
that the respective information is extracted from the image with the
largest activation in A. For partial FR, however, we only consider
a single image and expect different attention maps to be relevant
depending on the region of the face, i.e., if the eyes are occluded,
the corresponding attention maps should contain low activations.
Thus, we propose to use a parameter-free re-calibration following
the structure of [22]:

First, we normalize A by applying the sigmoid function
fnorm (·) = sigmoid (·). In this way, every pixel in every atten-
tion map is normalized separately to (0; 1). Besides, we compute
a vector s ∈ RK representing the importance of every atten-
tion map by applying Global Average Pooling (GAP) followed
by fex (·) = softmax (·):

s = fex

(
1

202

∑
i,j

Ai,j,k

)
(1)

with the indices i, j, and k denoting the pixel in the i-th row and
j-th column of the k-th attention map. By incorporating GAP, we
obtain global information of all attention maps and transform it into
a probability distribution indicating the importance of the respective
attention map using the softmax function. Next, we multiply the k-th
self-normalized attention map Ak with its corresponding importance
sk to obtain the final re-calibrated attention map Ãk:

Ãk = sk · sigmoid (Ak) (2)

Hence, in our re-calibration, we combine local information
within each attention map together with global information across
the attention maps.

After re-calibration, we apply attentional pooling as in [20] to
obtain K feature descriptors vk ∈ R1024:

vk =
∑
i,j

F i,j,: ⊙ Ãi,j,k (3)

In this way, the k-th feature descriptor contains the information of F
at the activation of the corresponding attention map Ak.



3.1.3. Aggregate

We conclude our partial FR model with the Aggregate module. Since
all feature descriptors vk focus on different regions within F de-
pending on their corresponding attention map Ak, a direct aggrega-
tion is impossible. Thus, we map every vk separately into a joint fea-
ture space fk ∈ R256 utilizing a single fully connected layer each.
Note that as every vk is in a different feature space, the weights are
not shared. Since fk encode identity information likewise, we com-
pute the mean to obtain the final feature vector f ∈ R256:

f =
1

K

∑
k

fk (4)

3.2. Loss Functions

To train our model, we apply a weighted sum of three losses L ,
which are described in the following:

L = λwCELwCE + λwDIVLwDIV + λREGLREG (5)

with λwCE, λwDIV and λREG denoting hyperparameters to balance the
losses, and LREG is the L2-norm of all trainable weights.

3.2.1. Weighted Cross-Entropy LwCE

To cope with some vectors fk representing occluded regions and
thus being less relevant, we propose a weighted softmax Cross-
Entropy (CE) loss. As usual for CE losses, we add a fully connected
layer to every feature vector fk matching the number of classes in
our training dataset. In this way, we obtain K CE losses LCE,k. To
obtain our final weighted CE loss, we scale every LCE,k with its
importance sk as computed in Equation 1:

LwCE =
∑
k

sk · LCE,k (6)

In this way, the network learns to emphasize attention maps rep-
resenting visible face areas while mitigating the influence of atten-
tion maps representing occluded regions. Note that since the weights
of the last fully connected layers are shared, every fk is transformed
equally, and thereby, we ensure that they encode identity informa-
tion likewise, i.e., lie in the same feature space. Moreover, due to the
high number of classes in the training dataset, fk act as bottleneck
layers improving our network’s generalization.

3.2.2. Weighted Diversity Regularizer LwDIV

The diversity regularizer’s objective is to assure diversity within the
attention maps as, without regularization, the network is prone to
tend towards using only one attention map or generating K identical
attention maps. We apply an adaptation of the diversity regularizer
from Xie et al. [20] to penalize the mutual overlap between different
attention maps. First, every attention map Ak is self-normalized into
a probability distribution P k using the softmax function:

P i,j,k =
exp (Ai,j,k)∑

i,j

exp (Ai,j,k)
(7)

Next, we compute their pixel-wise maximum of all P k scaled
with their respective sk and obtain the sum of all pixels. For mu-
tually non-overlapping attention maps, this sum is close to 1, which
allows computing the weighted diversity loss LwDIV as follows:

LwDIV = 1−
∑
i,j

max
k

(sk · P i,j,k) (8)
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Fig. 4. Faces during finetuning before (first column) and after (sec-
ond column) applying data augmentation (left). Generation of faces
for our centered partial LFW protocol for different non-occluded ar-
eas a (right).

4. EXPERIMENTS

4.1. Training Details

Our training is divided into two steps. First, we pretrain the model
on holistic faces for 20 epochs with ADAM optimizer [23] and a
batch size of 50. However, instead of using the weighted CE as
defined in Equation 6, we average all LCE,k and balance the losses
by setting λwCE = λwDIV = 1 and λREG = 5 · 10−5. We start with
an initial learning rate of 0.05 and divide it by 4 every 6 epochs. As
training dataset, we utilize VGG-Face2 [24], which comprises 3.3 M
images of 8631 identities. Using the facial landmarks extracted with
MTCNN [25], we align every face and crop it to a resolution of
160× 160 pixels. To improve generalization, we augment the faces
by changing brightness, contrast and saturation, and perform left-
right flipping with a probability of 50%. Moreover, dropout with
80% keep probability is added after vk.

In a second step, we leverage that the model performs well on
holistic faces and further finetune it on partial faces. As depicted
in Figure 4 (left), we synthetically generate rectangular partial faces
with an area between 10% and 100% with a probability of 80%.
Since weights are now well-initialized, we finetune the model for 5
more epochs using an initial learning rate of 0.002 and decay it every
2 epochs. Moreover, we use the weighted CE loss LwCE as in Equa-
tion 6. All remaining parameters are identical as during pretraining.

4.2. Benchmark Details

We evaluate our approach on the synthetically-occluded partial La-
beled Faces in the Wild (LFW) dataset 1, which is based on LFW [5].
To generate partial faces, we crop rectangular face patches of nine
different areas ranging from a = 9% to a = 73.7% of the original
face around three landmarks: left eye, nose, and mouth. Next, we
either leave the cropped face patches at their initial location and fill
the remaining image with zeros (non-centered) or move the patch
to the center and zero-pad to match the input resolution (centered).
Moreover, we utilize the CPLFW [26] dataset, which contains nat-
urally occurring occlusion due to extreme head poses. As distance
measure, we utilize the cosine distance of the features f .

1https://github.com/stefhoer/PartialLFW

https://github.com/stefhoer/PartialLFW


Table 2. Effect of different parameters on the accuracy in % on the LFW and CPLFW dataset. Mean accuracies over nine non-occluded areas
a are reported for partial - holistic (e.g. mouth - holistic), partial - same (e.g. mouth - mouth), and partial - cross (e.g. mouth - nose).

CPLFW LFW

non-centered: partial - centered: partial - #

K Agg LwCE fex fnorm holistic holistic holistic same cross holistic same cross Params

ResNet-41 87.52 99.62 97.71 97.27 94.53 97.25 96.80 93.56 8.82 M
ResNet-50 (no finetune) 88.20 99.58 94.77 94.93 88.85 92.05 92.47 83.92 24.05 M
ResNet-50 87.80 99.60 97.75 97.36 94.80 95.48 94.72 89.60 24.05 M

5 no re-calibration 87.80 99.47 97.60 97.18 94.14 97.01 96.64 92.96 16.19 M
5 softmax softmax 88.42 99.45 97.76 97.30 94.23 97.25 96.77 93.00 16.19 M
5 softmax sigmoid 88.87 99.62 98.04 97.60 94.58 97.62 97.16 93.45 16.19 M
5

√
softmax sigmoid 89.10 99.47 98.02 97.56 94.79 97.61 97.12 93.74 17.25 M

5
√ √

softmax sigmoid 89.18 99.67 97.99 97.54 94.79 97.58 97.08 93.73 17.25 M

12 no re-calibration 88.03 99.63 97.74 97.28 94.38 97.17 96.63 93.06 16.20 M
12 softmax softmax 88.10 99.50 97.61 97.11 94.43 96.77 96.24 92.68 16.20 M
12 softmax sigmoid 89.13 99.62 97.99 97.61 94.62 97.54 97.03 93.44 16.20 M
12

√
softmax sigmoid 89.08 99.60 98.02 97.56 94.85 97.60 97.08 93.86 19.09 M

12
√ √

softmax sigmoid 88.97 99.70 98.03 97.66 94.90 97.64 97.16 93.87 19.09 M

4.3. Baselines

We compare our approach with a standard ResNet-50 and a ResNet-
41, which is obtained by removing the last block of a ResNet-50
and, thus, has the same depth as our approach. Both are trained on
softmax CE loss and with identical parameters as in subsection 4.1.
We also train without the Aggregate module (Agg) by averaging all
K normalized attention maps Ãk to obtain a global attention map.
Then, attentional pooling is applied only for the global attention map
followed by a single bottleneck layer to obtain the feature vector.

4.4. Results

Table 2 depicts the aggregated accuracies for different benchmark
protocols on the LFW dataset. When considering a ResNet-50 (no
finetune), which was never exposed to partial faces during training,
we can observe that standard FR models are very susceptible to par-
tial faces. By finetuning on partial faces, the model performs better
on the partial protocols. While ResNet-50 outperforms ResNet-41 on
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Fig. 5. Accuracy on the LFW dataset for K = 12, fex = sigmoid,
and fnorm = softmax with Aggregate and LwCE on the centered
partial - cross protocol dependent on the non-occluded area a.

the non-centered protocols, it is inferior on the centered protocols.
We believe that this is due to ResNet-50 containing more trainable
parameters. Thus, it is more prone to overfit on the spatial informa-
tion present during training, since centering was not part of our data
augmentation.

Our ablation study shows that the re-calibration with fex =
sigmoid and fnorm =softmax is crucial for a well-performing
model. The number of attention maps K only has a minor in-
fluence, yet models with K =12 tend to have superior performance.
The Aggregate module and weighted CE loss LwCE improve the per-
formance, especially in the partial - cross protocols. For naturally
occurring occlusions as in CPLFW, our model also improves the
baseline. Besides, our approach further boosts the accuracy on the
holistic LFW benchmark, suggesting that our Attend and Aggregate
modules combined with partial faces as data augmentation assist
generalization. Overall, our approach to partial FR outperforms all
baselines while comprising fewer parameters than ResNet-50.

In Figure 5, we illustrate the influence of the non-occluded area
a of partial faces in the centered: partial - cross protocol. While
the accuracy when recognizing Left Eye - Right Eye is only slightly
affected by a, the scenario of verifying whether Mouth - Left Eye
belong to the same identity is considered most challenging. Over-
all, we can conclude that our model is more robust compared to the
baseline for all centered: partial - cross cases.

5. CONCLUSION

In this paper, we propose a CNN for partial FR consisting of three
modules: 1) Extract to predict feature maps and attention maps using
a truncated ResNet-50; 2) Attend to re-calibrate the attention maps
and perform attentional pooling; 3) Aggregate to fuse the feature
information into one global feature vector.

Our exhaustive analysis demonstrates that our approach outper-
forms all baselines and provides satisfying results for the arguable
more challenging partial - cross protocols (e.g. mouth - nose). These
results suggest that our model successfully transforms any arbitrary
face patch into a joint feature space, in which even the matching of
non-overlapping face patches is possible.
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