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ABSTRACT

Due to easy transmission of the COVID-19, a crucial step is
the effective screening of the front-line caregivers are one of
the most vulnerable populations for early signs and symp-
toms, resembling the onset of the disease. Our aim in this
paper is to track a combination of biomarkers in our ubiqui-
tous experimental setup to monitor the human participants’
operating system to predict the likelihood of the viral infec-
tion symptoms during the next 2 days using a mobile app,
and an unobtrusive wearable ring to track their physiolog-
ical indicators and self-reported symptoms. we propose a
multi-resolution signal processing and modeling method to
effectively characterize the changes in those physiological in-
dicators. In this way, we decompose the 1-D input windowed
time-series in multi-resolution (i.e. 2-D spectro-temporal)
space. Then, we fitted our proposed deep learning architec-
ture that combines recurrent neural network (RNN) and con-
volutional neural network (CNN) to incorporate and model
the sequence of multi-resolution snapshots in 3-D time-series
space. The CNN is used to objectify the underlying fea-
tures in each of the 2D spectro-temporal snapshots, while the
RNN is utilized to track the temporal dynamic behavior of the
snapshot sequences to predict the patients’ COVID-19 related
symptoms. As the experimental results show, our proposed
architecture with the best configuration achieves 87.53% and
95.12% average accuracy in predicting the COVID-19 related
symptoms.

Index Terms— Ubiquitous physiological monitoring,
COVID-19 Symptoms, Time-series prediction, CNN, RNN.

1. INTRODUCTION

COVID-19 has spread all over the world with a growing num-
ber of affected patients with more than 100 million confirmed
cases as of January 25, 2021 (https://coronavirus.jhu.edu).
The respiratory symptoms associated with the infection of
this strain has lead to significantly high hospitalization [1],
which have forced the medical workers into an increased
amount of work. Due to its contagious nature of the virus,
front-line medical workers are the most susceptible to be
affected. It has been observed that the virus has an incuba-
tion period of 2 to 14 days [2], before the affected person

starts developing or exhibiting symptoms. It is imperative
to make sure the front-line caregivers are not affected, as it
could render the entire medical facility in jeopardy. There-
fore, effective and longitudinal screening of early signs and
symptoms, resembling the onset of the disease is significant.

Several studies have attempted in utilizing predictive
models to anticipate the occurrence of symptoms in various
populations, such as [3–5]. Wearable consumer electronics
have been proven to be effective in estimating the physiolog-
ical and behavioral state pervasively and continuously [6, 7].
Though, little research has been conducted on COVID-related
wearable monitoring in front-line caregivers. The goal of this
paper is to investigate if early physiological biomarkers, in
our ubiquitous recording setup, can indicate the onset of
COVID-19 related symptoms. We aim to accurately identify
the presence of viral infections on our participants and predict
the development of symptoms during the next 2 days.

30 subjects participated in the study during the span of
4 months, where longitudinal data was acquired using a ring
device and our in-house mobile app to track indicators at the
Rockefeller Neuroscience Institute, West Virginia University
(WVU). These sensor data indicators, including heart rate
(HR) and heart rate variability (HRV) are used as the raw in-
put to feed our signal processing and predictive time-series
modeling system to anticipate the onset of the symptoms be-
fore they are physically manifested. Particularly, HRV is a
significant measure representing the variation in time between
each heartbeat. HRV is controlled by the autonomic nervous
system (ANS), which is a primitive part of the nervous sys-
tem that regulates HR, blood pressure, breathing, among oth-
ers autonomously. We anticipate that HRV can be a potential
predictor of COVID-19 related symptoms.

In the last few years, neural networks (NNs) have been
widely employed to learn the underlying patterns in the data
to enhance the predictive modeling performance. One of the
most popular architectures employed for dealing with tem-
poral features of the data is the recurrent neural networks
(RNNs). Various versions of the RNNs such as the long
short-term memory (LSTMs) have been developed in differ-
ent applications such as precipitation forecasting [8], natural
language processing [9], video segmentation [10], and even
remaining useful life (RUL) estimation of a system [11]. The
distinctive characteristic of the RNNs is a certain type of
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memory they possess to model time series data in time.
convolutional neural network (CNN) is another category,

which is capable of detecting complex spatial features with
different level of abstractions in the data in hand [12–14].
CNNs are merely able to extract the spatial features out of
the data, regardless of the temporal properties, that is why
they cannot be used for time-series data. Nevertheless, the
integration of CNN and RNN seems to culminate in better
perceiving the data, where CNN does the task of spatial fea-
ture extraction and RNN preserves the temporal properties,
such as in [15, 16]. Also, authors in [17] could detect the
QRS complex in ECG signal by feeding it to a CNN-LSTM
architecture.

In this study, our aim is to investigate the relationship
between the input physiological time-series patterns, and
the COVID-19 related symptoms in front-line caregivers by
leveraging the capabilities of our proposed architecture of
jointly-trained CNN-RNN structure. We attempt to identify
the future occurrence of symptoms such as fever, dry cough
and difficulty breathing [18]. If identified successfully, that
person can be isolated and tested for the presence of an infec-
tion by COVID-19 before the symptoms become apparent.
In this way, it is plausible to prevent asymptomatic trans-
mission [19] of the virus among the caregivers, as they can
self isolate even before the symptoms manifest, thus reduc-
ing the probability of further transmission. To the best of
our knowledge, this is the first study quantifying the well-
ness of COVID-19 front-line caregivers with respect to their
physiological signal by using deep learning methods.

2. EXPERIMENTAL SETUP & DATA ACQUISITION

This study includes 30 front-line caregivers directly dealing
with COVID-19 patients at the J.W. Ruby Memorial Hospi-
tal, WVU Medicine. Each subject was given an OURA ring,
tracking their 24-hour HR and HRV during 120 days with the
sampling rate of one per 3 mins. The data is synchronized
using our specifically designed app and cloud. A graphic user
interface was designed and installed on subjects’ cell phones,
on which they could report the presence of a set of symp-
toms, considered as labels, through a questionnaire that is
filled twice daily to increase our label resolution. The out-
line of the experimental setup is depicted in Fig. 1.

3. DATA PREPARATION & FEATURE EXTRACTION

3.1. Data Framing

Let us assume that the physiological dataset collected for each
subject is represented by X =

[
x1 x2 x3 · · · xD

]
,

where D denotes the number of days, and xi is a vector of
samples associated with the ith day. Thus,

xi =
[
xi

1 xi
2 xi

3 · · · xi
N
]T
, (1)

Fig. 1: The experimental setup for pervasive data collection.

Fig. 2: Framework for the Symptom prediction.

where, N indicates the number of samples per day. There-
fore, considering the sampling frequency to be equal to fs =
1/180Hz , the total number of samples per day would be N =

24hours×60mins×60secs×1/180
Hz

= 480samples. Further-
more, to prepare high-resolution data, the samples associated
with each day are segmented with a window of 5-hour du-
ration, and the overlap of o.l. = 90% (30 mins increments)
between two consecutive windows. Based on 5-hour duration
for each window, the number of samples per window and the
number of windows associated with each day would be 100
and 45, respectively.

3.2. Data Pre-processing

Prior to feeding the data to the network, two policies are cho-
sen with the missing values: 1) those related to taking-off the
ring are removed completely from the dataset, and 2) others
missed due to the user’s high activity during a much shorter
amount of time are replaced by the median of the previous five
samples. Finally, physiological samples per day are framed
into a consecutive set of 5-hour long windows.

3.2.1. Labels

To assess the caregivers for COVID-related symptoms, a set
of questions are asked twice daily via the provided mobile
app, for which the caregivers provide their responses. The
labels chosen here are various symptoms: fever, coughing,
sneezing, sore throat, shortness of breath, sense of smell
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Fig. 3: SWVD multi-resolution respresentation of an HRV
widow and the process of slicing.

change, where the presence of any of these symptoms was
labelled as 1, and else as 0 for each 12-hr period and their
corresponding windows of data. For the symptom class,
the aggregation of all the COVID-19 related symptoms was
considered in one positive class and we made sure that the
positive class constituted 15% of the whole data for the per-
formance measures to be meaningful.

3.3. Multi-Resolution Representation

Following the data segmentation, feature extraction is carried
out to achieve the highest possible efficiency out of the net-
work. It stands to reason that the spectral features are highly
representative of the signal behavior. Therefore, we intro-
duce the multi-resolution analysis, in which the signal is rep-
resented in joint time-frequency (TF) domains. Due to the
non-stationary and multi-component nature of physiological
signals, we use Wigner-Ville distribution that provides high
spectral resolution and have good cross-term reduction capa-
bility [20]. Wigner-Ville distribution is a variant TF method,
which incorporates smoothing by independent windows in
time and frequency, namely W (τ) and W (t), as below:

SWVD(t, ω) =

∫ +∞

−∞
Wω(τ)[

∫ +∞

−∞
Wt(u− t)x(u− τ

2
)

x∗(u+
τ

2
)du]ejωτdτ .

(2)

Eq. 2, represents smoothed Wigner–Ville decomposition
(SWVD), which provides great flexibility in the choice of
time and frequency smoothing (illustrated in Figure 3).

4. METHODOLOGY

Using CNNs, we aim to conduct automatic feature extrac-
tion in the multi-resolution time series. Then, we use RNNs,
whose mission is to preserve the temporal features of a time
series in the sequential modeling task in-hand. We establish
the methodology for the symptom prediction task based on a
supervised learning paradigm, where the inputs are the 1-D

physiological time series & the 2-D SWVD representation,
and the labels are the self-reported symptoms (Fig. 2).

4.1. Convolutional Neural Network (CNN)

Each chunk of the data is taken in by the convolutional layer.
With that being said, each chunk needs to be fed to the net-
work separately, and then distribute the data on continuous
time steps. In this study, each window of data is sliced into
smaller pieces with 75% overlap (Fig. 3) to feed the Time
scattered CNN separately and also augment the training data.
Each slice is first passed to the convolutional layer, and then
the entire windows go into a recurrent module one after an-
other.

4.2. Recurrent Modules

RNN makes use of current input along with the history of
information making its way forward from the previous time
steps. The RNN layers are stacked on top of each other to
extract more temporal dependencies between different parts
of the sequence. In this study, we investigate the difference
between the prediction results solely using the RNN modules
given 1-D temporal data, and its combination in addition to
the CNN transformation given the 2-D T-F SWVD. Fig. 4
visually explains our entire proposed modeling architecture
designed for the COVID-19 symptom prediction.

5. EXPERIMENTS

In this section, the results achieved by RNN+1D (raw tempo-
ral data) and CNN-RNN+2D (SWVD spectro-temporal data)
are compared to predict the existence of any symptoms dur-
ing the next 1 (and 2) day(s). Also, the biomarkers of HR,
HRV, and HR+HRV are compared as inputs to the deep learn-
ing models. The predictive models are trained and evaluated
per individual and then averaged over subjects to get an over-
all accuracy and precision. The parameters set in the network
are as follows: Learning rate= 0.001, loss function= categori-
cal cross-entropy, optimizer function= Adam, batch size= 20,
no. of epochs= 200 and the no. of recurrent layers= 4. Fur-
thermore, we have divided the dataset into two parts, the train
set and the validation set, where the percentage of the divi-
sions are 80% and 20% (time-series fashion), respectively.

5.1. Results

The validation accuracies for both of the architectures are
shown in the Table 1 and Table 2. It should be noted that
the architecture is exactly the same as shown in Fig. 4, with
and without the convolutional layer.

As can be seen in Table 1 and 2, the higher achieved
results for both the next 1-day and 2-day prediction belong
to the CNN-RNN architecture. The results demonstrate dra-
matic improvements compared to the results achieved by the
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Fig. 4: Entire architecture for symptom prediction.

Table 1: Performance comparison for different architectures
and different inputs for the next 1-day prediction.

Model Acc (%) Prec (%)
HR RNN+1D Raw 84.85 79.80
HR CNN-RNN + 2D SWVD 90.72 87.24

HRV RNN+1D Raw 85.28 80.80
HRV CNN-RNN + 2D SWVD 94.14 90.24

HR+HRV RNN+1D Raw 87.11 83.60
HR+HRV CNN-RNN + 2D SWVD 95.12 91.03

Table 2: Performance comparison for different architectures
and different inputs for the next 2-day prediction.

Model Acc (%) Prec (%)
HR RNN+1D Raw 76.53 71.68
HR CNN-RNN + 2D SWVD 84.23 80.40

HRV RNN+1D Raw 78.53 75.68
HRV CNN-RNN + 2D SWVD 85.97 82.22

HR+HRV RNN+1D Raw 79.72 77.13
HR+HRV CNN-RNN + 2D SWVD 87.53 83.62

RNN only model, which shows the effectiveness of the joint
CNN-RNN model optimization over the recurrent-based ar-
chitecture alone. Table 1 and 2 also report the prediction re-
sults comparing the 1-D temporal representation (i.e., raw sig-
nal) vs. the 2-D multi-resolution representation (i.e., SWVD
transformed). It is observed that the 2-D SWVD represen-
tation leads to better results compared to the raw temporal
representation for the input frames, which demonstrates the
profound effect of multi-resolution representation of data for
predictive modeling. Also, the results in both Table 1 and
2 consistently show that the HRV measure provides a no-
ticeably higher predictive capability to the models than the
HR and their combination can moderately improve the results
over the HRV measure alone. Due to the fact that there is a
class imbalance (i.e. 79% for ’0’ & 21% for ’1’), the preci-
sion measure is also provided in Table 1 and 2. As it can be
seen, precision is following the prediction accuracy consis-
tently, which is an evidence that the trained predictive models

are not biased toward the dominant class.

6. CONCLUSION

In this paper, we have shown that by designing a deep learn-
ing method, specifically, using a CNN layer for feature ex-
traction in multi-resolution jointly-trained with an memory-
based RNN module, we can detect the underlying patterns
in the HR HRV signals and predict the front-line caregiver
subject population COVID-related symptoms in a longitudi-
nal fashion. We empirically found that the ”HR+HRV as the
input + CNN-RNN + 2D SWVD representation” achieved the
highest averaged prediction accuracy of 95.12% and 87.53%
for the next 1-day and 2-day prediction, respectively. The re-
sults suggest that our developed system can serve as a critical
decision-making tool to help contain the spread of the virus.
This is significant as it shows the consumer electronics can
be incorporated in medical diagnosis. As our future direction,
the authors are working on improving the feature embedding
module, designing novel modeling architectures, and employ-
ing other modalities of the wearable sensor recordings in our
prediction and decision making on a larger population of sub-
jects.
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