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ABSTRACT

Unsupervised Domain Adaptation (UDA) aims to seek an
effective model for unlabeled target domain by leveraging
knowledge from a labeled source domain with a related but
different distribution. Many existing approaches ignore the
underlying discriminative features of the target data and the
discrepancy of conditional distributions. To address these
two issues simultaneously, the paper presents a Transferable
Discriminative Feature Mining (TDFM) approach for UDA,
which can naturally unify the mining of domain-invariant
discriminative features and the alignment of class-wise fea-
tures into one single framework. To be specific, to achieve
the domain-invariant discriminative features, TDFM jointly
learns a shared encoding representation for two tasks: super-
vised classification of labeled source data, and discriminative
clustering of unlabeled target data. It then conducts the class-
wise alignment by decreasing intra-class variations and in-
creasing inter-class differences across domains, encouraging
the emergence of transferable discriminative features. When
combined, these two procedures are mutually beneficial.
Comprehensive experiments verify that TDFM can obtain
remarkable margins over state-of-the-art domain adaptation
methods.

Index Terms— Domain adaptation, unsupervised learn-
ing, transfer learning, image classification.

1. INTRODUCTION
Domain Adaptation (DA) aims to leverage labeled data from
one or more similar domains (named source domain) to im-
prove the learning of the interested domain (named target
domain) that has a distribution different from but related
to the source distribution, i.e., the domain shift [1]. We
tackle one category of DA, i.e., , the problem of Unsuper-
vised DA (UDA) where the source domain contains abun-
dant labeled data while the target domain is fully unlabeled.
Mainstream approaches either explicitly extract the domain-
invariant features via minimizing the domain discrepancy
[2, 3, 4, 5, 6, 7] or implicitly learn them via adversarial learn-
ing [8, 9, 10, 11, 12, 13, 14]. Despite their general efficacy,
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Fig. 1. (a) The before adaptation of source and target do-
mains. (b) Existing methods ignore the intrinsic discrimi-
native information and the class-level structures, which di-
rectly align the marginal distributions. (c) The proposed
method mines the intrinsic discriminative features and adapts
the class-level discriminative features corporately.

these methods may still be constrained by two bottlenecks.
First, these methods overlook the underlying discriminative
features of the unlabeled target domain. Mining such infor-
mation can contribute to accelerating the domain-invariant
features learning, as well as to reducing the class-wise distri-
bution discrepancy. Second, many existing methods tend only
to minimize the divergence only between the marginal distri-
butions and ignore the difference of conditional distributions.
This may result in misclassification as shown in Figure 1 (b).

Accordingly, to tackle the two challenges outlined above
simultaneously, we propose a new approach, named Trans-
ferable Discriminative Feature Mining (TDFM), in which
we naturally unify the discriminative information exploration
and class-distinguishable features adaptation in one frame-
work. Figure 1 (c) simply shows our motivation. The left
picture of the Figure 1 (c) depicts that we firstly promote the
domain-invariant class-distinguishable structure by coopera-
tively learning the class boundaries in the source domain and
the clusters boundaries in the target domain. Then we apply
the obtained discriminative features to conduct class-wise
alignment as shown in the right picture of the Figure 1 (c).

Specifically, in order to learn the discriminative, yet
domain-invariant features, we propose to jointly learn a
shared encoding representation for two tasks: supervised
classification of labeled source data, and discriminative clus-
tering of unlabeled target data. The shared encoding is trained
through the simultaneous guidance of the supervised classifi-
cation loss of the source domain and the unsupervised cluster-



ing loss of the target domain, among which the clustering loss
is defined as the KL divergence between the model’s predic-
tive label distribution and an auxiliary distribution [15, 16].
In this way, the learned representation can guarantee both
domain invariance and categorical distinguishability.

In addition, as discussed above, the second challenge is
how to ensure the corresponding categories of the two do-
mains are correctly matched. With this in mind we conduct
the class-wise alignment which explicitly minimizes the Max-
imum Mean Discrepancy (MMD) [17] distances of class-level
distributions across domains. To be exact, the category labels
of unlabeled samples in the target domain are first predicted
and adopted as pseudo-labels during the training process. We
then incorporate class-discriminative information by encour-
aging the intra-class minimum distance and inter-class maxi-
mum distance into the class-level distribution alignment.

The goal of the proposed TDFM is to integrate the min-
ing of domain-invariant discriminative features and the adap-
tation of class-distinguishable features into a unified frame-
work. The learning of domain-invariant discrimination fea-
tures and the adaptation of the class-distinguishable informa-
tion can be coupled in a mutually beneficial manner. In detail,
the exploration of the class-discriminatory information can
aid in keeping different classes of each domain far away from
each other and the identical classes of each domain closer to
each other, while the learning approach significantly dimin-
ishes the cross-domain marginal distribution discrepancy via
the shared encoding. The good class-separability features ob-
tained will also facilitate the class-level distribution adapta-
tion. The contributions can be summarized as follows:

(1) We propose a novel TDFM approach to address
two bottlenecks for UDA simultaneously. First, the learned
domain-invariant representations can be equipped with category-
discriminative knowledge. Second, the class-level distribu-
tion can be adapted by keeping different classes far away
from each other and the identical classes closer to each other.

(2) The proposed TDFM explicitly unifies the learning of
domain-invariant discriminative features and the adaptation
of class-distinguishable features into a unified framework.
TDFM can fully exploit the discriminative information of
both domains and effectively minimize the marginal and con-
ditional divergences simultaneously, thereby facilitate the
learning process and boost the classification performance.

(3) Comprehensive experiments on the Office31, Office-
Home and VisDA-C datasets demonstrate that TDFM outper-
forms existing methods by a large margin. Ablation studies
prove the mining of the discriminative information and class-
level features alignment can benefit from each other.

2. PROPOSED METHODOLOGY
2.1. The UDA Problem Formulation
We focus on the problem of UDA in image classification,
where we consider two different domains defined with dif-
ferent but related probability distributions. The domain of

interest is dubbed the target domain while the available do-
main with labeled data is called the source domain. The goal
is to predict the labels of samples drawn from a target domain
as accurately as possible, given Ns labeled samples Xs =
{xsi}

Ns

i=1, with the annotations Y s = {ysi }
Ns

i=1 drawn from a
source domain andNt unlabeled samplesXt = {xti}

Nt

i=1 sam-
pled from the target domain, and we have ysi ∈ 1, 2, ..., C.
We define the feature extractor as f with parameters θ and the
embedding classifier as g with parameters φ. We denote the
whole network as h = f ◦ g.

2.2. Exploration of Discriminative Features
We first introduce the exploration of discriminative features
of the proposed Transferable Discriminative Feature Mining
(TDFM). The supervised classification of the source domain
and the unsupervised clustering of the target domain are
learned cooperatively via shared encoding in order to extract
the domain-invariant discriminative features. From a techni-
cal perspective, we define the supervised classification loss of
the source domain as:

Lcls(θ, φ) =
1

Ns

Ns∑
i=1

`ce(h(xsi ; θ, φ), y
s
i ), (1)

where `ce denotes the cross-entropy loss. Meanwhile, we
consider the clustering learning of the target domain Xt =

{xti}
Nt

i=1 which is clustered into C clusters in the output prob-
ability space. We define the prediction of the network, follow-
ing a multinomial logistic regression operation (i.e., ., soft-
max), as {pti}

Nt

i=1 which we abbreviate to P t. Similar to [16],
we first introduce an auxiliary target variableQt. The cluster-
ing objective function can thus be defined as:

L
′

clu(θ, φ) =
1

Nt

Nt∑
i=1

C∑
c=1

qticlog
qtic
ptic

+ qticlog%
t
k, (2)

where the first term denotes the KL divergence between the
model prediction probability P t and the auxiliary target vari-
able Qt. The second term is used to enforce the balanced as-
signments, where %tk = 1

Nt

∑Nt

i=1 q
t
ic. q

t
ic denotes the element

of Qt, which is defined as follows:

qtic =
ptic/(

∑Nt

j=1 p
t
jc)

1
2∑C

c′=1 p
t
ic′/(

∑Nt

j=1 p
t
jc′)

1
2

. (3)

To strengthen the discriminative ability of the learned feature,
we further introduce the clustering learning in the latent fea-
ture space Zt which is defined in the last layer output of the
feature extractor, i.e., zti = f(xti;θ) ∈ Zt. Similarly, we par-
tition the data in the latent feature space Zt into C clusters,
each of which is represented by a centroid µtc, c = 1, ..., C,
where µtc ∈ Zt and the cluster centroid is learnable. Then
we cluster the target samples using spherical K-means to ob-
tain their pseudo labels. Following [18], we use the Student’s
t-distribution as a kernel to measure the distance from embed-
ded point zti to centroid µj , as follows:

p̃tic =
exp((1 + ‖zti − µc‖

2
))−1∑C

c′=1 exp((1 + ‖zti − µc′‖2))−1
, (4)



where p̃tic represents the probability of soft cluster assign-
ments based on instance-to-centroid distances in the latent
feature space Zt. We collectively write p̃tic as P̃ t. Following
[15], we introduce the auxiliary distribution Q̃t to conduct the
clustering learning. Similar to Equation 3, the element of Q̃t

is defined as follows:

q̃tic =
p̃tic/(

∑Nt

j=1 p̃
t
jc)

1
2∑C

c′=1 p̃
t
ic′/(

∑Nt

j=1 p̃
t
jc′)

1
2

. (5)

Similar to Equation 2, the clustering loss of the latent feature
can be defined as:

L
′′

clu(θ, φ) =
1

Nt

Nt∑
i=1

C∑
c=1

q̃ticlog
q̃tic
p̃tic

+ q̃ticlog%̃k
t. (6)

By combining Equations 2 and 6, we can obtain the overall
clustering loss:

Lclu(θ, φ) = L
′

clu(θ, φ) + L
′′

clu(θ, φ). (7)
By training the classification loss (i.e., ., Equation 1) and the
clustering loss (i.e., ., Equation 7) together, we can obtain
domain-invariant category-discriminative representations.

2.3. Adaptation of Discriminative Features

The adaptation of the discriminative features step will explic-
itly minimize the distances of conditional distributions by en-
couraging small within-class compactness and large between-
class dispersion across domains.

Accordingly, similar to [4], we minimize the Maximum
Mean Discrepancy (MMD) [17] distance of the intra-class
sample pairs while maximizing the distance of the inter-class
sample pairs in the probability output space. In more detail,
the loss between two class conditional distributions with their
mean embeddings in the Reproducing Kernel Hilbert space
(RKHS) can be written as follows:

L′ada =
1

C

C∑
c=1

(
∑

xi,xj∈X(c)

‖ψ(h(xi))− ψ(h(xj))‖H

−
∑

xi∈X(c)

∑
xv /∈X(c)

‖ψ(h(xi))− ψ(h(xv))‖H),
(8)

where X(c) = Xs
(c) ∪ X̂

t
(c). X

s
(c) denotes source samples in

class c. X̂t
(c) denotes target samples in pseudo-class c. The

pseudo-label of the target domain is predicted by the spheri-
cal K-means clustering mentioned above. ψ(·) is the kernel
feature map of RKHS. As computing the Equation 8 directly
is intractable, we use the kernel trick to rewrite the first term
as follows:

dintra =
1

C

C∑
c=1

(o1 + o2 − 2o3), (9)

where o1 =
∑Ns

i=1

∑Ns

j=1

1c(y
s
i ,y

s
j )k(h(xsi ),h(xsj))∑Ns

i=1

∑Ns
j=1 1c(ysi ,y

s
j )

, o2 =∑Nt

i=1

∑Nt

j=1

1c(ŷ
t
i ,ŷ

t
j)k(h(xti),h(xtj))∑Nt

i=1

∑Nt
j=1 1c(ŷti ,ŷ

t
j)

, and o3 =
∑Ns

i=1

∑Nt

j=1

1c(y
s
i ,ŷ

t
j)k(h(xsi ),h(xtj))∑Ns

i=1

∑Nt
j=1 1c(ysi ,ŷ

t
j)

. ŷti and ŷtj denote the pseudo-labels of

the target domain, while k represents the kernel function [2].
Each element of 1c(y, y′) is defined as: 1c(y, y′) = 1 if y =
y′ = c;1c(y, y

′) = 0, otherwise. In the same way, the second
term of Equation 8 can be written as follows:

dinter =
1

C(C − 1)

C∑
c=1

C∑
c′=1,c′ 6=c

(o′1 + o′2 − 2o′3), (10)

where o′1 =
∑Ns

i=1

∑Ns

j=1

1cc′ (y
s
i ,y

s
j )k(h(xsi ),h(xsj))∑Ns

i=1

∑Ns
j=1 1cc′ (y

s
i ,y

s
j )

, o′2 =∑Nt

i=1

∑Nt

j=1

1cc′ (ŷ
t
i ,ŷ

t
j)k(h(xti),h(xtj))∑Nt

i=1

∑Nt
j=1 1cc′ (ŷ

t
i ,ŷ

t
j)

, and o′3 =
∑Ns

i=1

∑Nt

j=1

1cc′ (y
s
i ,ŷ

t
j)k(h(xsi ),h(xtj))∑Ns

i=1

∑Nt
j=1 1cc′ (y

s
i ,ŷ

t
j)

. The element of 1cc′(y, y′) is defined

as: 1cc′(y, y′) = 1, if y = c, y′ = c′;1cc′(y, y
′) = 0, other-

wise. By Combining Equations 9 and 10, Equation 8 can be
rewritten as follows:

L′ada = dintra − dinter. (11)
To strengthen the transferability of the class discriminative
features, we further introduce the adaptation of class-level
distribution in the last layer output of the feature extractor.
We conduct the adaptation learning of the latent feature z:

L′′ada = dintraf − dinterf , (12)

where the definition of dintraf and dinterf is similar to dintra

and dinter, respectively.
By combining Equations 11 and 12, we can obtain the

overall loss of the conditional distributions:
Lada = L′ada + L′′ada (13)

The entire loss can thus be obtained via the equation:
L = Lcls + λ1Lclu + λ2Lada, (14)

where λ1 and λ2 are applied to balance the loss function.

3. EXPERIMENTS
3.1. Datasets
Office-31 [19] consists of three domains: Amazon (A), Dslr
(D), and Webcam (W), and includes 4,652 images in 31
classes. Office-Home [20] contains around 15,500 images
divided into 65 classes. The dataset comprises four domains:
Artistic (Ar), Clip Art (Cl), Product (Pr) and Real-World
(Rw). VisDA-C [21] has two domains and 12 classes where
the Synthetic one, consisting of 152,397 synthetic 2D ren-
derings, and Real one, consisting of 55,388 real images.

Table 1. Classification accuracies (%) on Office31 dataset.
The bold numbers denote the best results for each column.

A→W D→W W→D A→D D→A W→A Average
ResNet-50 [22] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DAN [2] 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
DANN [9] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
CDAN+E [10] 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
CAN [4] 94.5±0.3 99.1±0.2 99.8±0.2 95.0±0.3 78.0±0.3 77.0±0.3 90.6
SRDC [23] 95.7±0.2 99.2±0.1 100.0±0.0 95.8±0.2 76.7±0.3 77.1±0.1 90.8
TDFM 96.1 ±0.3 99.2 ±0.0 100.0±0.0 95.5 ±0.2 79.2 ±0.3 78.1 ±0.2 91.4

Table 2. Classification accuracies (%) on the VisDA-C
dataset. The bold numbers denote the best result.
Methods ResNet-50 [22] DAN [2] DANN [9] CDAN+E [10] TAT [11] TDFM
Average 60.0 63.1 63.7 70.0 71.9 75.4



Table 3. Classification results (%) on the Office-Home dataset. The bold numbers denote the best result.
Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Ave.

ResNet-50 [22] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [2] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [9] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN+E [10] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 69.3 53.6 82.0 65.8
SRDC [23] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
TDFM 62.2 78.1 83.2 69.7 77.9 78.6 70.1 59.7 83.4 75.9 63.4 85.9 74.0

Table 4. Ablation experiments on Office31 and Office-Home dataset. Bold numbers denote the best results for each column.
A→W D→W W→D A→D D→A W→A Ave.

TDFM (w/o ada) 84.9±0.1 98.2±0.1 100.0±0.0 84.7±0.1 75.3±0.3 73.0±0.1 86.0
TDFM (w/o clu) 94.5±0.3 99.1±0.2 99.8±0.2 95.0±0.3 78.0±0.3 77.0±0.3 90.6

TDFM 96.1 ±0.3 99.2 ±0.0 100.0±0.0 95.5 ±0.2 79.2 ±0.3 78.1 ±0.2 91.4
Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Ave.

TDFM (w/o ada) 53.2 71.3 75.9 62.4 71.2 69.4 61.6 51.1 75.8 68.4 51.3 79.8 66.0
TDFM (w/o clu) 60.3 77.2 79.4 68.5 74.9 72.9 69.6 58.4 79.4 72.7 57.5 82.2 71.1

TDFM 62.2 78.1 83.2 69.7 77.9 78.6 70.1 59.7 83.4 75.9 63.4 85.9 74.0

3.2. Implementation Details
We applied ResNet-50 [22], pretrained on ImageNet [24] as
the backbone. The network was trained using the mini-batch
SGD optimizer. The learning rate annealing strategy was
adopted as [4]: ηp = η0(1 + αp)−β , where p denotes the
training progress changing from 0 to the maximum number
of iterations. For Office-31 and Office-Home, α = 0.001,
β = 0.75, while for VisDA-C, α = 0.001 and β = 2.25.
η0 denotes the initial learning rate, 1e-3 for the convolutional
layers and 1e-2 for the task-specific FC layer. The tradeoff pa-
rameter λ1 annealing strategy is λ1 = λ′1(1+0.001∗p)−0.75,
where λ′1 was set to 0.1. The λ2 was set to 0.3.

3.3. Results
To facilitate fair comparison, the results of other compari-
son methods are directly quoted from their original papers.
Experimental results are presented in Table 1, 2 and 3. In
a word, we can observe that our proposed method outper-
forms the state-of-the-art methods on all transfer tasks, which
strongly confirms the effectiveness of our proposed TDFM
in mining the transferable discriminative features. TDFM
exceeds the excellent results obtained by CAN [4] in terms
of its ability, which demonstrates that clustering learning
could promote the following of following class-level feature
adaptation. Moreover, TDFM also outperforms SRDC [23],
which improves the discriminability via clustering learning;
this proves that focusing only on data clustering is insufficient
to guarantee the transferability of class-level information.

(a) (b)
Fig. 2. (a) Accuracy curve. (b) Distribution discrepancy.

3.4. Analysis
Ablation Studies Table 4 presents the results of our abla-
tion studies on Office-31 and Office-Home datasets. We re-
move the clustering loss and the class-level adaptation loss
from the overall training objective, respectively; the train-
ing settings are denoted as TDFM (w/o clu) and TDFM (w/o
ada), respectively. TDFM (w/o clu), similar to CAN [4],
performs much better than TDFM (w/o ada), which shows
the adaptation of class-level features is more important than
the clustering learning. TDFM also significantly outperforms
TDFM (w/o clu), which verifies the mining of discriminative
information via clustering learning plays an important role
in this process. Importantly, the ablation experiments reveal
that the clustering learning and the adaptation of class-level
features can promote each other and work better coopera-
tively. Convergence and Distribution Discrepancy Figure
2 (a) illustrates the test accuracy of TDFM (w/o ada), TDFM
(w/o clu) and TDFM on the A→W task. We can see TDFM
achieves optimal performance more quickly. We further an-
alyze the proxy A-distance (PAD) [25] on the A→W and
A→D tasks as shown in Figure 2 (b). We can observe the
PAD of TDFM is smaller than TDFM (w/o ada) and TDFM
(w/o clu), which suggests that our features can more effec-
tively reduce the cross-domain gap.

4. CONCLUSION
We develop a novel TDFM approach for UDA. The proposed
TDFM incorporates domain-invariant discriminative features
learning and class-level features adaptation into a single
framework. The domain-invariant discriminative features are
achieved via joint learning of supervised classification of the
source domain and unsupervised clustering of the target do-
main. The class-level feature adaptation is obtained via the
maximization of inter-class distances and the minimization
of intra-class distances. These two procedures work cooper-
atively to significantly improve the target classification accu-
racy. Comprehensive experiments demonstrate that TDFM
substantially outperforms the state-of-the-art methods.
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