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Fiber recognition in composite materials

Xiang Li, Sara Shonkwiler, Sara McMains

University of California, Berkeley

Abstract

The accuracy of fiber recognition in cross-sectional scanned images is critical to material characterization
for Fiber-Reinforced Polymer (FRP) composites. It is challenging to accurately detect and locate all
fibers, especially broken fibers. We propose a two-step approach to automatically detect and categorize
fibers. First we exploit distance-transform-based watershed segmentation to extract the boundaries of
individual fiber cross-sections to handle cases where fibers contact each other, then use our proposed
contour gradient charts to evaluate the breakage of each fiber cross-section and classify individual fiber
boundaries as circles or ellipses. Our method accurately and robustly recognizes fibers in the cross-
sectional images, whether they are aligned or misaligned, complete or broken.

Keywords: Fiber recognition, Microscope image processing, Circle detection, Shape analysis,
Fiber-reinforced polymer

1. Introduction

Fiber-reinforced polymer (FRP) composites are
one of the most popular composite materials,
widely used in aerospace, automotive, and other
manufacturing industries [1] because of their su-
perior strength-to-weight ratio. The constituents
of FRP materials are the fibers, which provide the
majority of the strength and stiffness of the ma-
terial; and the polymer matrix, which binds the
fibers together. The properties of FRP materials
are largely dependent on their microstructure, such
as the geometric distribution of the fibers in the
matrix. To characterize FRP materials and inspect
their microstructure, one of the most common ap-
proaches is to analyze cross-sectional scanned im-
ages either by optical microscopy [2] or computed
tomography [3] of the composite materials.

In this paper, we will consider the case of uni-
directional FRP composites (see a sparse example
in Fig. 1 and an actual cross-section in Fig. 2). In
these composites, most fibers are aligned, which
provides the FRP part extraordinary mechani-
cal performance along this major fiber direction.
For material characterization, researchers analyze
cross-sectional scans taken transversely to the ma-
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Figure 1: Diagram of (a) a unidirectional FRP composite;
(b) its transverse cross-section with aligned and misaligned
fiber cross-sections appearing as circles and ellipses respec-
tively.

jor fiber direction, in which aligned fibers will ap-
pear as circles, and misaligned fibers appear as el-
lipses (Fig. 1(b)).

The scanned images enable researchers to an-
alyze the basic composite properties, assess mi-
crostructural damage [2], and reconstruct three-
dimensional microstructure [4, 5]. All of these ma-
terial characterization analyses rely on the accu-
racy of fiber recognition from the scanned images.
The characterization can not be accurate if the
fibers are not correctly identified and located in
the images.

Recognizing fibers from the scanned image usu-
ally follows a two-step process: (1) segment fibers
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Figure 2: An example of the input scanned image

that contact each other into individual fiber pixel
blob regions; (2) fit a circle or an ellipse to each
individual fiber pixel blob. Mlekusch [6] separated
the touching fiber regions into individual fiber seg-
ments based on their convexity, and then fitted
contour points of each segment into ellipses based
on a regression calculation. In [7], Martin-Herrero
et al. detected individual fiber blobs by using suc-
cessive mathematical morphology operations, and
then fitted ellipses to them based on least-squares
orthogonal distance fitting [8]. Amjad et al. [5] ap-
plied a marker-controlled watershed segmentation
to identify fibers, and then approximated them as
ellipses by a Hough-transform-based ellipse detec-
tor [9]. The above methods performed well under
the assumption that all the fibers are undamaged
fibers (circles or ellipses); however, broken fibers
are common in FRP composites (Fig. 2). An ac-
curate method to recognize both the broken and
complete fibers is necessary and is crucial to the
overall evaluation of the composite material.

We present a novel method to automatically rec-
ognize fibers in composite material cross-sectional
images, whether they are aligned or misaligned,
complete or broken. This method first segments
the binarized scanned image into individual fiber
pixel blobs using watershed segmentation, and
then identifies their breakage and fits circles or el-
lipses to them. To better identify the fiber break-
age, we introduce a new method, called contour
gradient charts, that efficiently distinguishes com-
plete and broken fibers and further helps with the
circle/ellipse fitting.

2. Fiber Blob Detection

Since the fiber cross-sections all appear as com-
plete or broken circular/elliptical blobs in the
scanned image, we first detect blob areas for each
individual fiber. Fig. 3 illustrates the steps of our

fiber blob detection process: (a) converting the in-
put image to grayscale; (b) binarizing the grayscale
image and removing noise; (c) building the dis-
tance transform from the binary image; (d) apply-
ing watershed segmentation on the distance trans-
form; (e) merging oversegmented regions.

(a) (b) (c)

(d) (e) (f)

Figure 3: The procedure for fiber blob detection: (a)
grayscale; (b) binarization and cleaning; (c) distance trans-
form; (d) watershed segmentation; (e) merging overseg-
mented regions; (f) result: individual fiber pixel blobs.

Beginning with the original scanned image, we
convert it to grayscale and apply Gaussian smooth-
ing to reduce noise (Fig. 3(a)). In the smoothed
grayscale image, fiber pixels have observably higher
intensity values than the resin matrix pixels. Based
on the intensity contrast between fiber and matrix
pixels, we convert the grayscale image into a binary
image using Otsu’s histogram-based global thresh-
olding method [10] and denoise it (Fig. 3(b)). We
do so by identifying connected fiber (white in the
image) pixel regions below a minimum number of
pixels. In our experiments, we found removing re-
gions with fewer than 10 connected pixels (about
10% of fiber cross-section size) led to good fiber
detection results.

After denoising, each individual connected fiber
pixel region in the binary image corresponds to one
of the following: an individual fiber, a group of
contacting fibers, or a chunk of broken fiber. To
segment individual fiber blobs from regions of con-
tacting fibers, we exploit distance-transform-based
watershed segmentation, as follows.

From the binary image, we build a Euclidean
distance transform [11] that assigns each pixel its
distance to the nearest polymer (matrix) pixel
(Fig. 3(c)). The local maximum values in the dis-
tance transform efficiently indicate the centers of
each individual fiber. We then run watershed seg-
mentation [12] on the distance transform, sepa-
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rating contacting fibers into individual fiber blobs
(Fig. 3(d)).

In the continuous space, perfect circles and el-
lipses only have one local maximum distance point
at their centers. However, since the composite im-
ages are represented in discrete pixels, the fibers
are not perfect circles or ellipses, which may cause
multiple local maxima being calculated near the
fiber center point. As illustrated in Fig. 3(d) left
red box, this can cause an oversegmentation in the
watershed segmentation. Broken fibers may also be
oversegmentated because of their irregular shapes
(Fig. 3(d) right red box). To deal with these over-
segmentation problems, after the watershed seg-
mentation, we merge detected regions whose lo-
cal maxima in the distance transform were close
and that were also connected in the binary image
(Fig. 3(e)).

The output of the fiber blob detection is
pixel blobs representing detected individual fibers
(Fig. 4). Next (Section 3), we will describe how
we identify their breakage, and compute their lo-
cations accordingly.

(a) (b) (c)

Figure 4: Real-world examples of different fiber blob types:
(a) complete aligned fiber; (b) complete misaligned fiber;
(c) broken fiber.

3. Fiber Breakage Evaluation and Localiza-
tion

After identifying the pixel blobs for each fiber,
we propose a novel tool called contour gradient
charts to help determine if they are broken. Based
on the analysis from the contour gradient charts,
we select unbroken contour pixels and fit a circle
or ellipse to each fiber.

3.1. Breakage evaluation via contour gradient
charts

Our approach to determining whether a fiber
blob is broken or not is based on a simple yet pow-
erful idea: for complete fiber blobs, the gradient di-
rection along the boundary varies smoothly along

all its contour pixels; for broken fiber blobs, the
gradient direction varies smoothly only along the
contour pixels bounding its unbroken portion, but
rapidly changes at the broken portion of the con-
tour pixels. This property enables us to determine
if a fiber blob is broken by checking if rapid gradi-
ent changes exist along its contour pixels.

We define the gradient direction of a boundary
point (assuming a continuous perfect circle for il-
lustration) to be perpendicular to its tangent line
and into the circle. An example is illustrated in
Fig. 5, where twelve points are evenly sampled on
the circle in clockwise order (from P1 to P12), with
gradient directions for examples P1, P5, and P10

shown.

P1(0𝑜𝑜)

P5(240𝑜𝑜)

P10(90𝑜𝑜)

0𝑜𝑜

90𝑜𝑜

180𝑜𝑜

270𝑜𝑜

Figure 5: An example of contour sample points and their
gradient directions.

We create a “Contour Gradient Chart” (CGC)
to illustrate the gradient direction change along the
boundary sample points. In the chart, x values
are the sample points on the contour of the cir-
cle in clockwise order and y values are their cor-
responding gradient direction angles (Fig. 6(a)).
To analyze the rate of change of gradient angles,
we take the derivative (numerical gradient) of the
CGC modulo 360◦and call it the “first derivative
CGC” (Fig. 6(b)).

(a) (b)
Contour Gradient Chart (CGC) 1st Derivative CGC

Figure 6: Contour gradient charts of the example in Fig. 5.

Now considering the fiber blobs detected from
Section 2, we construct CGCs of each by select-
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ing their contour (boundary) pixels as the sam-
ple points. For these contour pixels, we use the
Sobel-Feldman operator to calculate their gradi-
ent vectors. The discretized contour pixels bring
noise to the calculation of the gradient, but after
applying a moving average operation, the gradient
direction changes between sample points on com-
plete fibers are small and approximately constant
because of the smoothness of complete circles and
ellipses (Fig. 7). Call the number of sample points
N . The sum of all the signed gradient direction
changes will total 360◦ along all boundary pixels,
so the average value of gradient direction changes,
which should be close to the approximately con-
stant value for unbroken fibers, is −360◦/N in the
first derivative CGC.

Figure 7: Example first derivative CGC of fiber blobs from
Fig. 4. The circular, elliptical, and broken fibers have
NC=46, NE=58, and NB=45 boundary pixels, respectively.
Complete fibers (circle/ellipse) have relatively steady gra-
dient direction changes close to −360◦/NC = −7.8◦ or
−360◦/NE = −6.2◦; the broken fiber has dramatic changes
far from −360◦/NB = −8◦.

However, for broken fibers, dramatic gradient di-
rection changes occur at the break points. It is easy
to observe and classify the broken fibers and com-
plete fibers from their first derivative CGCs by de-
tecting if there are large gradient direction changes
or not (Fig. 7 and 8). Furthermore, the unbroken
portion of the contour can be identified using the
first derivative CGC. Similar to a complete fiber
blob, the corresponding range of the unbroken por-
tion of a broken fiber would be seen as a long period
of approximately constant gradient changes around
−360◦/N in the first derivative CGC (Fig. 8).

(a) (b)

1

2

3
1

2

3

Figure 8: Selected unbroken portion of contours are shown
in red in (a) first derivative CGC, and (b) its corresponding
fiber blob. Red stars demonstrate dramatic gradient direc-
tion changes and their relations to the actual break points.

3.2. Circle and ellipse fitting

The final step is to fit a circle or an ellipse to the
candidate contour pixels of each fiber blob. For
complete fibers, all of their blob boundary pixels
are taken as the candidate pixels; for broken fibers,
only the selected unbroken portion of boundary
pixels are the candidate pixels.

Since a circle is a special case of an ellipse, we
choose to apply a direct ellipse fitting algorithm
[13] to our candidate pixels in order to simulta-
neously handle both aligned and misaligned fibers
(Fig. 9).

Figure 9: Circle/ellipse fitting results for different fiber blob
types. The input pixels are rendered in light red.

4. Experimental Results

We tested our proposed method on more than 30
real-world microscope cross-sectional images from
3D printed FRP parts. The images have an aver-
age size of 18,000*9,500 pixels and contain about
500,000 carbon fiber cross-sections, with 7-8% bro-
ken fibers. The categorization and localization (the
calculation of fiber boundaries) output of our al-
gorithm on the test images was manually exam-
ined by material experts, who found no errors with
our method’s results for almost all fibers (>99.9%
overall correctness, >99% correctness for broken
fibers). Typical classification failures occur when
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the breakage is fully inside a fiber, or an inclusion
with nearly smooth contour exists (Fig. 11(a, c)).
In such cases, since no rapid gradient changes ex-
ist along the fiber boundaries, our algorithm falsely
identifies them as complete fibers (Fig. 11(b, d)).

(a)

(b)

Figure 10: Experimental results: (a) the input image; (b)
recognized complete (blue) and broken (red dotted) fibers.

(a) (b) (c) (d)

Figure 11: Failure cases: (a-b) a broken fiber with only
inner breakage is falsely identified as a complete fiber; (c-
d) (two) inclusions falsely identified as complete misaligned
fibers. (Incorrect identifications are shaded beige.)

To the best of our knowledge, our approach is
the first method that can robustly recognize bro-
ken fibers and calculate their fitting circles/ellipses.
In contrast, direct circle/ellipse detection meth-
ods [9, 14] are generally based on the theory of
the Hough transform, which is sensitive to noise.
Because there is often fiber debris (noisy pixels)
around the breakage locations, the direct detec-
tion methods are prone to generate false positive
detections around the broken fibers (Fig. 12(b)).
Fiber blob segmentation and ellipse fitting meth-
ods [5, 6, 7] efficiently eliminate the noisy pixels by
the blob segmentation process, but they are unable
to recognize breakage in the fibers. The contour
pixels on the broken portion may cause inaccurate
circle/ellipse fitting (Fig. 12(c)). Our proposed
method only selects contour pixels on the unbro-
ken portion after eliminating noisy pixels during
the fiber blob detection process, and only then fits

ellipses to identify misaligned fibers. These opera-
tions lead to a more robust and accurate detection
of the broken fibers (Fig. 12(d)).

(a) (b) (c) (d)

Figure 12: Localization results comparison with other pop-
ular methods: (a) input; (b) direct circle/ellipse detec-
tion [9, 14]; (c) fiber blob segmentation and ellipse fitting
[5, 6, 7]; (d) our method.

5. Conclusions

In this paper, we propose a novel fiber recog-
nition algorithm, for cross-sectional scanned im-
ages of composite materials that detects all types of
fibers and distinguish which are broken, unbroken,
and/or misaligned. We introduce contour gradi-
ent charts, which enable identifying broken fibers
as well which boundary pixels are on their un-
broken contours, for more accurate circle and el-
lipse fitting. The performance is validated on real-
world microscope images from 3D-printed fiber-
reinforced polymer parts, on which our method is
able to correctly identify and classify over 99.9% of
fibers.
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