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ABSTRACT

In the last few years, several companies started offering the possibil-
ity of buying different kinds of overhead images acquired by satel-
lites orbiting around the planet. This market is interesting for several
customers, from those who simply fancy a shot of their house from
space, to those aiming to acquire strategic information on portions
of land. Due to the sensitive nature of this data, which can be mali-
ciously altered by anyone, the forensic community has started inves-
tigating methodologies to verify overhead imagery authenticity and
integrity. Within this context, in this paper we investigate the possi-
bility of using Convolutional Neural Networks (CNNs) to attribute
a panchromatic satellite image to the satellite used to acquire it. In
our investigation we tackle both closed-set and, adapting Deep En-
semble (DE) and Monte Carlo Dropout (MCD) techniques, open-set
image attribution problems.

Index Terms— Image forensics, overhead images, source attri-
bution, open-set classification, deep learning

1. INTRODUCTION

Editing and manipulating digital images is becoming easier over
time. For instance, it is possible to use one of the many available and
user-friendly software suites (e.g., Adobe PhotoShop, GIMP, etc.)
or, alternatively, to rely on automatic services and techniques driven
by deep learning and computer vision technologies (e.g., Face2Face,
Faceswap, etc.). In order to avoid the widespread use of maliciously
manipulated pictures, the multimedia forensics community has put a
great effort into developing image authenticity and integrity assess-
ment techniques [1].

In additional to common photograph manipulation, many im-
age editing tools can be successfully used to forge other kinds of
imagery. This is the case of overhead images, i.e., images of the
ground acquired by satellites orbiting around the planet. Obtaining
this kind of data is nowadays extremely simple. As a matter of fact,
it is possible to freely download them from multiple websites [2],
or to buy them from specialized companies. As malicious editing
of this kind of images has already led to serious consequences [3],
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developing forensics techniques tailored to overhead image analysis
is now a necessity.

It is worth noting that manipulation of overhead images has be-
come a threat only recently due to the current possibility of gathering
satellite data. Therefore, state-of-the-art techniques for their forensic
analysis are still underdeveloped, and they mostly focus on forgery
detection and localization. As an example, the authors of [4] have
proposed a method to localize inpainted regions on satellite images.
The work in [5] introduces a method to detect and localize over-
head image splicing using a Generative Adversarial Network (GAN)
paired with a one-class classifier. The authors of [6] have proposed a
method to detect forgeries using a conditional GAN. In [7], forgery
detection is cast as an anomaly detection problem. Finally, in [8]
generative autoregressive models are used to model the image pixel
distribution and detect deviations.

In this paper, we consider a different forensic problem that has
been broadly studied for natural images but not yet investigated for
satellite data to the best of our knowledge: image source attribution.
Attributing an image to its source means detecting which acquisition
device has been used to capture the image under analysis. For nat-
ural images, this problem has been studied at different granularity
in the literature [9]: some methods consider the problem of detect-
ing which kind of device was used for the acquisition (e.g., camera
vs. scanner); other methods consider the problem of detecting the
specific brand or model (e.g., Sony vs. Canon); other methods con-
sidered the problem of detecting the specific instance of the device
(e.g., this iPhone X vs. that iPhone X).

Our goal is to understand which satellite has been used to ac-
quire a panchromatic image under analysis. More specifically, we
consider this attribution problem both in closed-set and open-set. In
the first one, we assume that the image may only come from a set
of known satellites. In the second one, we assume instead that the
image may also come from a satellite that is unknown to the sys-
tem, yet the system should be able to label the image as such. The
proposed method is based on the use of a Convolutional Neural Net-
work (CNN) that acts as classifier. In order to deal with the open-set
problem, we exploit the idea behind model uncertainty recently used
also in forensic scenarios [10]. Specifically, we adapt and compare
two different strategies: Deep Ensemble (DE) [11] and Monte Carlo
Dropout (MCD) [12]. The main idea is that it is possible to run mul-
tiple attribution tests on a single image under analysis. If the image
comes from an unknown satellite, the trained CNN should exhibit
an uncertain behavior across its responses. This behavior can be
captured and used to reject the image as coming from an unknown
satellite. Otherwise, the image is attributed to the originating satel-
lite.
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Fig. 1. Panchromatic image samples from different regions.

2. SATELLITE ATTRIBUTION

The satellite attribution problem we tackle can be formulated as fol-
lows. Given a panchromatic image I (see Figure 1) and a set of M
known satellites, we want to understand if I has been acquired with
one of the M known satellites or not (i.e., open-set). If the answer is
positive, we also want to determine which satellite’s sensor among
the M considered ones has generated it (i.e., closed-set).

In order to do so, we rely on a CNN ensembling method as de-
picted in Figure 2. Considering N CNNs trained in closed-set over
the M known classes, we test the image against all of them, ob-
taining N attribution scores, and then we evaluate the classification
uncertainty of the ensemble based on these responses. If the eval-
uation of the uncertainty is high, we conclude that the image does
not belong to any of the known satellites. Otherwise, we attribute
the image according to the closed-set classification response. The
following subsections describe the ensembling and uncertainty eval-
uation techniques.

2.1. Model ensembling

In this work we consider two different methods to obtain an ensem-
ble of N classifiers. One is based on DE [11] and the other one
id based on MCD [12]. Both techniques rely on a single network
model, which in our case is the EfficientNetB0 of the EfficientNet
family [13], which offers a good trade-off in terms of number of pa-
rameters and performances and has recently been deployed in the
forensics literature consistently [14, 15, 16]. The methods differ in
the way the network is trained and scores are obtained.

Deep Ensemble. Let us consider a backbone CNN (Efficient-
NetB0 in our experiments). Having M known satellites, we train
this CNN in closed-set as an M -class classifier. This means that the
output of the CNN is an M element vector

y = [y0, y1, ..., yM−1], (1)

where the m-th element ym represents the likelihood of the sample
to belong to the m-th satellite. We repeat the training procedure N
times, starting each time from a different seed for the random initial-
ization of network weights. This provides us with N different trained
CNN instances with slightly different weights due to the optimiza-
tion process. The ensemble is then composed of these N models,
where the n-th model returns the prediction vector yn. While surely
presenting some computational issues, this method is easily scalable
and parallelizable at both the training and testing stage.

Monte Carlo Dropout. Let us consider a backbone CNN (an
EfficientNetB0 in our experiments). Considering M known satel-
lites, this time we train a single instance of the network as an M -
class classifier using dropout [17] before the last fully connected
inner-product layer. Also in this scenario, the output of our net-
work is an M element vector y, where each element represents an

Fig. 2. Complete pipeline of the considered source attribution
method. Each CNN in the ensemble returns an M -element vector
representing the likelihood for each class. Uncertainty is evaluated
based on the coherence of the scores. Attribution is performed based
on the estimated uncertainty.

attribution score for one of the known satellites. To obtain the net-
work ensemble, during testing, we keep dropout active and test the
sample image N times. This means that each inference is obtained
by randomly turning off a series of neurons in the penultimate layer.
This operation can be viewed as processing the image with N dif-
ferent sub-networks, each one contained in the parameter space of
the complete trained network, with weights chosen according to the
dropout distribution. We obtain N vectors yn per tested image.

While the original idea is described as model averaging in [17],
the authors of [12] demonstrated how the use of dropout in neural
networks actually makes the network approximate Bayesian infer-
ence in a deep Gaussian process [12]. This allows us to represent the
model uncertainty with a theoretically founded base, while maintain-
ing the available deep learning tools and with very little cost in terms
of testing time and no additional costs in training time.

2.2. Uncertainty Analysis

Given a sample image and the N CNN outputs obtained by one of
the ensembling techniques, our goal is to estimate the model’s un-
certainty on that sample. Specifically, we are interested in modeling
the epistemic uncertainty, i.e., the uncertainty on the model param-
eter values resulting from the fact that our training data inevitably
captures only a portion of the input domain.

Since both techniques aim at modeling this kind of uncertainty
in a deep model, our goal is to exploit this estimation to characterize
samples of unknown classes as samples out of the distribution of the
training data, i.e., samples for which the confidence of our models in
processing them is low. To do so, we slightly modify the uncertainty
estimation proposed by the authors of both DE and MCD.

We consider the N M -element outputs yn, n ∈ [0, N−1] alto-
gether as samples of a multi-dimensional distribution in RM , where
M is the number of classes considered. We evaluate the entropy
H(y) of these N realizations and use it as uncertainty measure. In-
tuitively, if all N CNNs point to the same class (i.e., low entropy), we
tend to trust the classification output (i.e., the image belongs to the
satellite pointed by all networks). Conversely, if the N networks pro-
vide inconsistent results (i.e., high entropy), we conclude that none
of the satellites has acquired the image, which is then attributed to
the “unknown” class (i.e., a satellite not in the training set).

3. EXPERIMENTS

3.1. Dataset

In order to test the effectiveness of the investigated pipeline, we cre-
ated a dataset of satellite images. We collected 8-bit panchromatic
images from the DigitalGlobe portal [18] coming from 5 different



Table 1. Classification report on the closed-set scenario for the base-
line network trained with all classes of panchromatic images.

All classes GE01 QB02 WV01 WV02 WV03

Precision 0.772 0.768 0.965 0.901 0.780
Recall 0.710 0.894 0.908 0.814 0.853
F1-score 0.740 0.827 0.936 0.815 0.830
Overall accuracy 0.832

Fig. 3. Confusion matrix for a baseline EfficientNetB0 trained with
all satellite classes available in closed set ( accuracy of 83%).

satellites: GeoEye (GE01), QuickBird (QB02), WorldView 1, 2 and
3 (WV01-02-03). All images are provided in GeoTIFF format, with
no compression, in non-overlapping tiles of 16384x16384 pixels.
All tiles are orthorectified, sensor and radiometrically corrected. To
avoid a possible bias due to the semantics of the scene represented in
the images, we have selected different geographical regions, so that
for each satellite we have samples coming from urban, snowy, bar-
ren, forest and field areas. Some samples are reported in Figure 1.
However, as these images were too large to be processed by our base-
line network, we performed a patch extraction procedure on each
sample. Specifically, we extracted pixel patches of size 1024×1024,
ending up with a dataset of roughly 3000 images equally balanced
in number among all satellite classes and in the geographical areas
represented.

3.2. Setup

The baseline network we considered in our setup is an Efficient-
NetB0 that we trained as an M -class classifier. The network is
trained from scratch, as most available pre-trained models work on
natural images, therefore having a strong mismatch with respect to
the panchromatic imagery we are analyzing. For closed-set experi-
ments, we consider M = 5 (i.e., all available satellites in the dataset)
and we follow a train-validation-test scheme, where we use roughly
50% of samples for training, 25% for validation, and the remaining
25% for testing. For the open-set experiments, we consider M = 4
(i.e., we leave one satellite out of the training set) and we add to
the test set all images coming from the unknown satellite (i.e., the
one left out during training). Open-set experiments are repeated
five times following a leave-one-out procedure (i.e., each satellites
is considered as unknown in one experiment).

For MCD we adopted a single seed for random initializing the
model. For DE, we trained 10 networks using 10 different seeds
increasing in value computed with a fixed step of 10. Finally, re-
garding CNN hyperparameters, all networks have been trained using
batches of 5 images and a simple cross-entropy loss for 200 epochs,

(a) MCD ensembles with N ∈
{2, 4, 10, 20, 40, 50}.

(b) DE ensembles with N ∈
{2, . . . , 10}.

Fig. 4. ROC curves obtained using MCD or DE ensembles with
different N values. AUC stops increasing at a for N ≥ 10.

relying on Adam [19] for optimization. We started with a learning
rate of 0.001 reduced on a plateau of the validation loss after 10 con-
secutive epochs, and early stopping of the training if the validation
loss did not improve after 50 consecutive epochs or if the learning
rate reached a minimum of 10−8. We used PyTorch [20] as our deep
learning framework.

All experiments have been run on a machine equipped with an
Intel Xeon E5-2687W-v4 and a NVIDIA Titan V. Training of the
baseline networks took 2-6 hours, while the test inference on a sin-
gle sample by a single network took on average 0.1 seconds. This
number must be multiplied accordingly to the ensembling technique
adopted (i.e., MCD or DE).

3.3. Evaluation Metrics

To measure the performance of the investigated solution, in the
closed-set scenario we use accuracy, precision, recall, and F1-score.
For the open-set scenario, we have to set a threshold on the entropy
of the ensemble’s output. We therefore decided to use Receiver
Operating Characteristic (ROC) curves and the corresponding Area
Under the Curve (AUC) to see if it is possible to clearly distinguish
samples outside the training distribution based on this threshold. In
this scenario, threshold intervals for the ROC curves vary depending
on the network ensemble used and are automatically computed by
the implementation available in the Scikit-learn library [21].

4. RESULTS

4.1. Closed-set

The first experiment is performed to evaluate whether the selected
backbone network can solve the source attribution problem in
closed-set. To this purpose, we trained the EfficientNetB0 con-
sidering all the available satellites (i.e., M = 5). Figure 3 reports
the obtained confusion matrix, while Table 1 reports all the achieved
metrics. These results show that it is possible to exploit Efficient-
NetB0 for this task, however also highlighting that the problem
is more challenging with respect to classic camera attribution. In
particular, we can see that 11.52% of the samples of class GE01 are
mistaken for WV03 and 9.68% for WV02, and vice versa 22.73%
of WV03 samples are classified as GE01.

The second experiment is aimed at understanding the perfor-
mance of the baseline network trained on M = 4 classes. Despite
this seeming redundant, it is important for the open-set evaluation.
Indeed, in the open-set setup, we exclude one of the five known satel-
lites from the training set, thus considering the backbone network as



(a) Training without GE01
samples.

(b) Training without QB02
samples.

(c) Training without WV01
samples.

(d) Training without WV02
samples.

(e) Training without WV03
samples.

Fig. 5. Open-set results for the leave-one-class experiments. NDE and NMCD denote N values for DE and MCD whenever they are combined.

Table 2. Classification report on the closed-set scenario consider-
ing the worst and best leave-one-class out experiments in terms of
overall accuracy.

WV01 samples out GE01 QB02 WV02 WV03

Precision 0.786 0.872 0.860 0.864
Recall 0.727 0.927 0.888 0.878
F1-score 0.755 0.900 0.874 0.871
Overall accuracy 0.844

WV03 samples out GE01 QB02 WV01 WV02

Precision 0.981 0.943 0.941 0.888
Recall 0.898 0.961 0.973 0.945
F1-score 0.938 0.952 0.957 0.916
Overall accuracy 0.940

an M = 4 class classifier. Table 2 reports the classification metrics
related to the worst and best, in terms of overall accuracy, leave-one-
class out experiments with the baseline network, i.e., a single (no
ensemble) EfficientNetB0. While all CNNs reach an accuracy equal
or greater than 85%, performances on the same classes of satellite
are not consistent across all experiments. The most evident case is
the one of satellite GE01, for which the baseline network reaches an
F1 score of 0.755 when trained without the WV01 samples, whereas
in the other three scenarios achieves results equal or above 0.9.

These numbers suggest that satellite attribution maintains a cer-
tain level of difficulty even for a very simple dataset, fact which is
more surprising when considering that each sensor model possesses
unique features related to design, processing chain and satellite char-
acteristics that should make this task closer to the well-known foren-
sic camera model identification.

4.2. Open-set

For the open-set classification task, our efforts initially focused in
determining an appropriate number of networks for both MCD and
DE. To this purpose, Figure 4 shows the ROC curves obtained using
MCD and DE with a different N in the case EfficientNetB0 is trained
over four satellites and WV03 samples are used as unknown class.
It is possible to observe that the AUC increases with N , but has
diminishing returns after N = 10

The next experiment we performed aimed at evaluating DE,
MCD and their combination considering all five leave-one-class
out scenarios (i.e., four satellites in the training set, and one left
out as unknown). Figure 5 shows these open-set classification per-

formances. In addition to the DE and MCD with N = 10, we
considered two equivalent combinations of 10 networks obtained
with 5 and 2 MCD inferences of a DE of 2 and 5 networks re-
spectively, and an ensemble of 25 and 100 networks considering a
combination of 5 and 10 MCD inferences with a DE of 5 and 10
networks respectively. In all these experiments we use NDE and
NMCD to distinguish the N value used for DE and MCD.

For all 5 classes we obtained high AUC values with every
ensemble. DE offered always better performances with respect to
MCD, with a minimum AUC of 0.73 for the WV01 satellite open-set
classification and a maximum of 0.891 for WV03. Interestingly, the
equivalent combination of MCD and DE, while always performing
equivalently or better than MCD, did not always reach the perfor-
mances obtained by the 10 networks DE, with the only exception
being the case where WV01 is used as unknown class. Moreover,
the simple 10 networks DE almost always performed better than the
combination of 25 networks obtained with 5 MCD inferences of the
5 networks DE, and comparably with the final combination of 10
MCD inferences of the 10 networks DE.

Looking also at the better performances obtained by the combi-
nation of the 5 networks DE with the 2 MCD inferences with respect
to its specular equivalent, these numbers seem to suggest that the
sampling of the scores’ distribution obtained through DE gives more
advantages with respect to MCD. However, the results obtained for
the open-set classification of the WV01 samples seem also to point
to the fact that a smaller number of networks, better conditioned due
to their initial random initialization, might sometimes perform better
than a bigger ensemble.

5. CONCLUSIONS

In this paper we investigated the problem of satellite attribution for
panchromatic images. We considered this problem both in closed-set
and open-set. In closed-set, we assume that the image under analysis
may only come from a series of known satellites. In the open-set
scenario, we assume that the image under analysis may also come
from a different source not known at training time.

In order to cope with the open-set problem, we adapted a well-
known Convolutional Neural Network (CNN) to our goal, and we
investigated two different strategies: Deep Ensemble (DE) [11] and
Monte Carlo Dropout (MCD) [12]. Both strategies slightly perturb
a single network to obtain multiple predictions for each image under
analysis. These pieces of information from all predictions are then
exploited to obtain the final answer. Results on the gathered dataset
show the feasibility of the proposed approaches. Future work will be
devoted to explore the challenges of a possible large-scale test with
a consistent number of satellites, like those of Planet platform [22].
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