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ABSTRACT

Following the performance breakthrough of denoising net-
works, improvements have come chiefly through novel archi-
tecture designs and increased depth. While novel denoising
networks were designed for real images coming from differ-
ent distributions, or for specific applications, comparatively
small improvement was achieved on Gaussian denoising. The
denoising solutions suffer from epistemic uncertainty that can
limit further advancements. This uncertainty is traditionally
mitigated through different ensemble approaches. However,
such ensembles are prohibitively costly with deep networks,
which are already large in size.

Our work focuses on pushing the performance limits of
state-of-the-art methods on Gaussian denoising. We propose
a model-agnostic approach for reducing epistemic uncertainty
while using only a single pretrained network. We achieve this
by tapping into the epistemic uncertainty through augmented
and frequency-manipulated images to obtain denoised images
with varying error. We propose an ensemble method with two
decoupled attention paths, over the pixel domain and over that
of our different manipulations, to learn the final fusion. Our
results significantly improve over the state-of-the-art base-
lines and across varying noise levels.

Index Terms— Deep network denoising, epistemic un-
certainty, ensemble methods, neural attention.

1. INTRODUCTION

The importance of image denoising stems from its widespread
utility in all imaging pipelines and a variety of applications.
In fact, denoising can be used for regularization in general im-
age restoration problems [ 1], and it is valuable when training
high-level vision tasks [2]. Of particular interest is the fun-
damental problem of additive white Gaussian noise (AWGN)
removal, as other noise distributions can be mapped to it with
a variance stabilization transform [3]. It has received consid-
erable attention in the literature, where BM3D [4] held for
long the state-of-the-art performance among classical meth-
ods. The question of whether neural networks can compete
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Fig. 1. Test sample denoising, showing the result of the
DnCNN baseline, and our corresponding result with our at-
tention fusion method. Best viewed on screen.

with it [5] was finally positively answered with the advent of
deep convolutional networks for denoising [6, 7], and the sig-
nificant performance improvements that they achieved.

After their initial breakthrough on AWGN removal, deep
learning based denoising solutions were developed to im-
prove their blind and universal aspects [8], their applicability
to real images [9], or their joint application along with de-
mosaicking [10, 1'1], or super-resolution [12]. Comparably
less progress was made with respect to the performance on
the AWGN removal problem, and the understanding of the
performance of a given network. In [8], the authors assess the
optimality of a deep denoiser through a controlled experimen-
tal setup, and show that it does come significantly close to
the statistically-optimal performance over the training range.
However, the conclusions cannot be readily extended to real
images because the nature of the real image prior is not an-
alytically known [8]. A given method can hence fall short
of optimality, notably due to aleatoric (or data centric) and
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epistemic (model centric) uncertainty. The former being mit-
igated in the controlled AWGN setup, we focus on epistemic
uncertainty in what follows.

To address epistemic model uncertainty and improve the
overall performance, ensemble methods can be leveraged.
Ensembles are made up of multiple models, with various
network architectures or a fixed architecture with variable
weights [13] obtained by retraining, or by sampling the
weights from a Bayesian network [14], or simply adding
noise to the weights themselves [15]. However, the size of
the overall method grows linearly with that of the ensemble,
which can be prohibitively costly with deep networks. The
recent work on collegial ensembles [13] shows promising
results that an ensemble setup can better scale compared to
a wide deep network, but this setup requires a joint retrain-
ing of all the ensemble’s models. In this paper, we aim to
mitigate epistemic uncertainty by leveraging the power of en-
sembles, but using only a single pretrained network: unique
architecture and unique weights.

To that end, we propose a self-ensembling strategy where
the different branches are virtually created with a single pre-
trained denoiser. We empirically find that the epistemic un-
certainty of a model emerges also when faced with augmented
or manipulated versions of an image. Aside from the standard
spatial techniques usually used for data augmentation, we also
propose frequency-domain based manipulations inspired by
the training regularization masking technique recently pre-
sented in [16]. This frequency manipulation allows us to
obtain significantly less correlated denoising errors, which
are crucial for any ensemble technique’s performance. At-
tention mechanisms have shown impressive results in various
applications [ | 7—19], and are recently finding their way to de-
noising architectures [20,21]. We make use of dual-attention
paths for our ensembling method. We propose to decouple the
spatial and channel attentions, leading to improved results, as
we discuss in what follows.

Our results show that our method can tap into the deep
denoiser epistemic uncertainty through the augmented and
frequency-manipulated images, hence producing various de-
noised versions with variable uncertainty-based error. In other
words, we virtually create an ensemble through a unique pre-
trained denoiser. Furthermore, we are then able to leverage
these stochastic outputs through an ensemble fusion strategy
with two attention modules to significantly improve the base-
line results. Our contributions can be summarized as follows.
We show that the epistemic uncertainty of deep denoisers can
be addressed through spatial and frequency-domain noisy in-
put manipulations. We present a novel method to fuse the
outputs that we generate, by leveraging decoupled spatial-
attention and channel-attention paths. We achieve denoising
improvements that are consistent across various state-of-the-
art deep denoisers, and across the range of test noise levels.
Our method, being denoiser agnostic, can also be applied to
any novel denoising method developed in the future.
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Fig. 2. Denoised-image error distribution, with a pretrained
DnCNN and noise level 50. Pixels are selected at random in
the test set. We show the residual error in the regular denoised
image, and the errors in the spatially-manipulated (SM) and
frequency-manipulated (FM) images. Best viewed on screen.

2. PROPOSED METHOD

The key elements of our proposed method are the generation
of a virtual ensemble using a unique pretrained network, and
an ensemble fusion strategy. We discuss in this section our ap-
proach for generating the virtual ensemble, and our proposed
ensemble method.

2.1. Epistemic uncertainty through image manipulation

We observe that, although data augmentation techniques are
used during the training of deep denoising networks, the latter
do not gain invariance with respect to these augmentations.
For instance, the pretrained convolutional neural networks are
not invariant to image mirroring, although denoising itself is
agnostic to mirroring. This is one of the aspects of model
uncertainty that we leverage in our method. We make use
of the following seven spatial manipulations (SM): rotation
of 90° and vertical mirroring, vertical mirroring, rotation of
270°, rotation of 180° and vertical mirroring, rotation of 90°,
rotation of 180°, and rotation of 270°.

As we show in the following section, the errors across
spatial manipulations remain relatively correlated. For that
reason, we investigate frequency-domain image manipula-
tions. In [16], the authors present a frequency-conditional
learning in super-resolution networks, and by extension show
that it directly relates to denoising networks as well. Based
on these findings, we propose to conduct frequency manip-
ulations (FM) by masking out different frequency bands in
the noisy image. We conduct our masking essentially across
the restoration target (high frequencies) but also over some
of the conditional observed bands (low frequencies). The
frequency-manipulated image I, is obtained as

In =F Y (F(I) o M), (1)

where F(-) is a frequency transform, I is the input image,
M is a frequency-domain mask, and ® is the element-wise
product. In our work, we use the discrete cosine transform



(DCT) transform type II, for its bijective relation with the
Fourier transform. The mask M is a binary mask delimited
by quarter-annulus areas defined by two radii values. The
mask is zero in the DCT domain over the quarter annulus.
The radius values are computed away from the DC compo-
nent of the DCT as a fraction of the maximal radius 7,,4z.
We thus make use of five frequency manipulations, corre-
sponding to the following masks: [0.1 * a2, "'maz)s [0-3 *
Tmazs Tmaz)> [0-D* T'mazs Tmaz]> [0-4* Trmazs 0.5 % Timae ], and
[0.8 %70z, 0.9% 7,4, . We select the first three masks empir-
ically to filter out what corresponds to high frequencies rela-
tive to varying noise levels. In fact, the higher the noise level,
the lower is the high-frequency restoration cutoff [16]. The
last two masks are band-stop, rather than low-pass, filters that
allow the partial masking of mid-to-high frequencies. The
remaining residual contributes to the variability that is bene-
ficial for our ensemble method.

Along with the original noisy image, we thus create
twelve manipulated image versions to tap into the epistemic
uncertainty of a pretrained denoiser. The following section
presents our ensemble method that exploits these manipulated
images. We also analyse the error distribution and the corre-
lation of error across the different proposed manipulations in
Sec. 3.1.

2.2. Decoupled dual-attention fusion

Our ensemble method is a fusion relying on two attention
mechanisms. The first attention path consists of spatial atten-
tion, where a weight map is learned for every manipulated im-
age. The manipulated images that are passed through the pre-
trained denoiser are thus element-wise multiplied with their
corresponding attention maps. Different manipulations can
lead to varying performance across an image. Notably, fre-
quency manipulations can yield images with better or worse
performance according to the frequency content in a given im-
age region. Therefore, the spatial attention can learn the cor-
responding weight to differentiate between the varying cases.
The second attention path is channel attention. Rather than
focusing on the pixel level, this attention mechanism learns to
estimate the quality of the denoised images corresponding to
each manipulation, as a whole. This eases the learning burden
of the attention network, and provides global information on
the denoising performance.

We propose to decouple the two attention paths in our fu-
sion strategy. We note that their sequential application ef-
fectively leads to partially redundant weights. First, this re-
dundancy reduces the overall performance of the ensemble.
And second, it creates a conflict in the network’s learning
phase that has a negative impact on convergence. We there-
fore decouple our two attention paths, and merge their outputs
through concatenation and a single convolutional layer. We
present in our experimental results the performance of each
of the attention modules separately, and show that the fusion
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Fig. 3. Pearson correlation of pixel-wise errors across the
regular image and all manipulations (noise levels 10 and 50).
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(o = 50) + Fusion + Fusion + Fusion

Fig. 4. Sample visual denoising results, with and without our
proposed fusion method. Best viewed zoomed on screen.

of the two achieves the best results.

3. EXPERIMENTAL EVALUATION

3.1. Manipulation analysis

An essential component for ensembles is the variability
across the underlying methods. We randomly sample from
our test set 50 pixels, and analyze the error distribution in
Fig. 2 for different manipulations. We show the error re-
maining after denoising for the regular image (red triangle),
the frequency-manipulated images (green crosses), and the
spatially-manipulated images (blue plus symbols). We note
that errors are rarely zero centered, and that the magnitude
of the errors is often larger than that of the regular denoised
image, hence the difficulty for the ensemble method.

We further analyze the correlation across our different
manipulated and denoised images. We compute the Pearson
product-moment correlation coefficients of the pixel-wise
errors on the test set. These coefficients are computed pair-
wise, for every pair of manipulations, and the corresponding



Spatial attention
(SM - FM - Joint)

Channel attention
(SM - FM - Joint)

Ours full
(SM - FM - Joint)

Backbone Noise Baseline Ensemble

denoiser level results (SM - FM - Joint)
10 33.30 33.38 32.29 33.11
20 29.72  29.78 29.25 29.67

DnCNN [6] 30 27.68  27.74 27.34 27.66
40 26.19  26.24 25.87 26.18
50 2496  25.01 24.67 24.96
10 3340  33.5232.3633.25
20 29.71  29.79 29.10 29.63
MemNet [7] 30 27.61  27.68 27.1027.55
40 26.11  26.17 25.64 26.06
50 2494 249924512492
10 33.58  33.6732.4133.35
20 29.86 2991 29.1729.73
RIDNet [9] 30 27.71  27.76 27.13 27.61
40 26.13  26.18 25.65 26.07
50 2490  24.9524.5024.88

33.48 33.52 33.56
29.84 29.92 29.90
27.83 28.02 28.02
26.41 26.72 26.70
25.26 25.62 25.55

33.52 33.55 33.60
29.8529.94 29.99

33.5233.43 33.54
29.79 29.78 29.84

33.5533.52 33.58
29.99 29.98 30.03
28.12 28.10 28.16
26.88 26.89 26.91
25.96 25.97 25.99

33.64 33.52 33.65
30.05 29.95 30.06

27.83 28.06 28.07
26.36 26.70 26.78
25.2225.62 25.80

33.66 33.65 33.70
29.93 29.98 30.06
27.8728.1128.11
26.35 26.81 26.85
25.17 25.60 25.55

27.68 27.77 27.81
26.17 26.37 26.3
24.99 25.29 25.

3.

33.6733.59 3
29.91 29.89 29.93
27.76 27.83 27.87
26.18 26.42 26.4
24.95 25.32 25.32

28.16 28.14 28.18
26.92 26.93 26.94
7 25.9226.01 26.02

2

67 33.7333.63 33.73
30.10 30.06 30.11
28.22 28.19 28.24
26.97 26.97 27.01
26.01 26.06 26.08

\O

Table 1. Gaussian denoising PSNR (d B) results of the baseline networks, the averaging ensemble, our spatial attention module,
our channel attention module, and our full dual model. We include the ablations using only our spatially-manipulated (SM) or
frequency-manipulated (FM) images, rather than all (Joint). Best results in bold, best per attention mechanism are underlined.

results are shown in Fig. 3. Index O corresponds to the reg-
ular denoised image, indices 1 to 7 correspond to the seven
denoised images with spatial manipulations, and indices 8 to
12 to those with frequency manipulations. We first note that,
although not identical, the errors across the seven spatial ma-
nipulations are significantly correlated. On the contrary, those
across the five frequency manipulations are decorrelated from
each other and from the spatial ones. This is a great advantage
for our subsequent ensemble method, and a chief reason for
proposing the frequency-masking manipulations.

3.2. Experimental setup and results

We conduct our experiments on the DnCNN [6], MemNet [7],
and RIDNet [9] denoisers. These networks are pretrained on
the BSD400 images, and are not modified or retrained in any
experiment, following the experimental setup in [16]. We
train our attention-based fusion ensemble for 100 epochs on
images taken from BSD500, and test the final results on the
corresponding separate 100-image validation set. Our method
is model agnostic and can be applied on RGB, RGBD, multi-
spectral, Poisson-Gaussian, or real image denoising. Our
experiments are conducted over the fundamental grayscale
AWGN removal, because having multi-spectral correlated
information [22] makes the denoising problem easier, and
other noise distributions can be transformed to a normal dis-
tribution [3]. The results are given in Table 1. We present
the results of the pretrained vanilla baseline, the straight-
forward averaging (Ensemble), our method using only the
spatial attention path, or only the channel attention, and our
full dual-attention fusion method (Ours full). When only a

single attention path is used, we fuse its different manipu-
lated images using a softmax function for normalizing the
ensemble weights. For each of the setups, we present the re-
sults when only spatial manipulations are used (SM), or only
frequency manipulations (FM), or the entire set of proposed
manipulations (Joint).

The results show that, despite our manipulations that pro-
vide good error decorrelation, the averaging ensemble does
not achieve any significant improvements over the baseline.
In fact, the improvements with SM are slight, while with
FM the results are worse than the baseline. This shows that
although our frequency manipulations provide decorrelated
errors, they are not zero-centered and cannot be simply av-
eraged. We lastly note that, while the spatial or channel
attention solutions can improve the final results, the best
performance is consistently obtained by our decoupled dual-
attention fusion. We show further visual results in Fig. 4, and
more in our supplementary material.

4. CONCLUSION

We present and analyze different image manipulation tech-
niques for creating a virtual ensemble through a unique pre-
trained denoising network. Particularly, we obtain less cor-
related errors with our frequency-domain manipulations. We
propose a dual attention fusion for our final ensemble, and
further improve results by decoupling the attention paths. Our
Gaussian denoising results consistently improve upon various
denoisers, and across the test noise levels. The method we
propose is denoiser agnostic and can be applied to any de-
noising method, and potentially other restoration tasks.
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