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ABSTRACT

3D hand-object pose estimation is an important issue to under-
stand the interaction between human and environment. Current
hand-object pose estimation methods require detailed 3D labels,
which are expensive and labor-intensive. To tackle the problem
of data collection, we propose a semi-supervised 3D hand-object
pose estimation method with two key techniques: pose dictionary
learning and an object-oriented coordinate system. The proposed
pose dictionary learning module can distinguish infeasible poses by
reconstruction error, enabling unlabeled data to provide supervision
signals. The proposed object-oriented coordinate system can make
3D estimations equivariant to the camera perspective. Experiments
are conducted on FPHA and HO-3D datasets. Our method reduces
estimation error by 19.5% / 24.9% for hands/objects compared
to straightforward use of labeled data on FPHA and outperforms
several baseline methods. Extensive experiments also validate the
robustness of the proposed method.

Index Terms— Hand-object pose estimation, semi-supervision,
pose dictionary learning

1. INTRODUCTION

Estimating the pose of hands and manipulated objects is an impor-
tant task to understand and recognize the behavior of human beings.
The related techniques are highly valuable for many practical ap-
plications, e.g., AR/VR games and robotics [1, 2, 3, 4]. Here we
specifically consider 3D hand-object pose estimation; that is, given
the 2D poses of a pair of hand and object, we aim to estimate the
corresponding 3D poses. Recent 3D hand-object pose estimation
methods use deep neural networks (CNN [5, 6, 7], GCN [8], trans-
former [9, 10]) to jointly model hands and objects. However, these
methods require detailed 3D labels, demanding expensive sensing
equipment and a huge amount of manpower [11, 12, 13]. To tackle
the problem of data collection, we propose to perform 3D hand-
object pose estimation in a semi-supervised manner; that is, we only
label a small subset of hand-object poses and use both labeled and
unlabeled data to train a pose estimator.

There are two main challenges in semi-supervised 3D hand-
object pose estimation task: (1) unlabeled data should be effectively
leveraged to improve the estimation; and (2) the estimation result
should be equivariant with respect to the camera perspective; that
is, for multiple 2D poses obtained through photographing the same
3D pose from different camera perspectives, 3D estimation results
should be consistent in terms of geometric shapes and only vary in
terms of camera perspectives.

This work is supported by the National Key Research and Development
Program of China (No. 2020YFB1406801), 111 plan (No. BP0719010), and
STCSM (No. 18DZ2270700), and State Key Laboratory of UHD Video and
Audio Production and Presentation.

Fig. 1. Hand-Object pose estimation results obtained by the pro-
posed method from the camera view (left) and another view (right).
Blue lines are ground truth.

To address the first challenge, we introduce an internal self-
supervision task and use labeled data to train a 3D grasping pose
dictionary, which can well reconstruct feasible 3D grasping poses;
in other words, this trained 3D grasping pose dictionary can use the
reconstruction errors to distinguish feasible 3D grasping poses from
infeasible ones, acting as a discriminator. In our system, even though
we do not know the ground-truth 3D grasping poses for unlabeled
data, we can use this 3D grasping pose dictionary to identify bad 3D
estimations and supervise our pose estimation module to adjust. To
address the second challenge, we propose an object-oriented cylin-
drical coordinate system, which uses the center of the object as the
origin and synchronizes the object’s orientation. In this coordinate
system, the joints’ positions are invariant to the camera perspective
and an estimation model can focus on estimating grasping poses, ex-
cluding the influence of the camera’s perspective. After the estima-
tion, we can transform the result back to the standard camera-based
Cartesian coordinate system, which makes the estimation equivari-
ant to camera’s perspective.

Integrating above designs, we propose a novel semi-supervised
3D hand-object pose estimation network, which includes two train-
ing phases. In the first phase, we use labeled data only to train a pose
dictionary learning module, whose functionality is to decompose an
input 3D grasping pose into a linear combination of 3D grasping
pose atoms. The training process is to learn such a 3D grasping pose
dictionary through self-reconstruction. Different from vanilla au-
toencoders [14, 15, 16, 17], we use the 3D grasping pose dictionary
and the corresponding linear approximation to regularize the recon-
struction process, whose benefits are to model the grasping poses
more explicitly and constrain the variance of reconstruction process.
In the second phase, we train our pose estimation module with the
pose dictionary learning module fixed. The pose estimation module
is implemented by a graph U-net [8] model and is trained with both
labeled and unlabeled data, where labeled data provides direct super-
vision and unlabeled data provides supervision signals through the
reconstruction error of the pose dictionary learning module. In both
phases, the proposed object-oriented cylindrical coordinate is used in
the reconstruction process. We conduct experiments on FPHA [11]
and HO-3D [12] datasets and the experimental results show that our
method improves estimation accuracy significantly and is of high ro-
bustness.
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The main contributions of our method are as follows.
•We propose a semi-supervised 3D hand-object pose estimation

network, which is trained by leveraging both labeled and unlabeled
data. To our best knowledge, this is the first work to tackle 3D hand-
object pose estimation task in a semi-supervised setting.
• We propose a pose dictionary learning module to perform an

auxiliary self-reconstruction task, enabling unlabeled data to provide
supervision signals.
• We propose an object-oriented cylindrical coordinate system

to represent 3D poses, making 3D estimation results equivariant to
the camera perspective.
• We conduct experiments on FPHA [11] and HO-3D [12]

datasets. The proposed method reduces the estimation error by
19.5%/24.9% for hands/objects compared to straightforward use of
labeled data on FPHA, and outperforms several baseline methods.
Extensive experiments show that our method is robust to the pose
dictionary size and weight of the reconstruction loss.

2. METHODOLOGY

2.1. Problem Formulation

The goal of 3D hand-object pose estimation is to estimate the 3D
coordinates of hand joints and the object bounding box’s 8 corners
from the corresponding 2D coordinates. Mathematically, let X =
{Xi}Ni=1 be the 2D pose input, where Xi ∈ R2×(m+8) withm is the
number of joints in a hand. Among them, only NL samples XL =
{Xi}NLi=1, have 3D annotations; denoted as YL = {Yi}NLi=1, where
Yi ∈ R3×(m+8). Let PL = {(Xi,Yi)}NLi=1 be the annotated pairs
of 2D-3D poses. The rest N −NL samples XU = {Xi}Ni=NL+1 do
not have 3D annotations. The task is to infer 3D poses from 2D poses
through the limited annotated pairs PL as well as a huge amount of
unannotated 2D poses XU .

Here we tackle this task by proposing a neural-network-based
estimation model; that is, given both labeled and unlabeled data for
training, we aim to propose a pose estimation network to generate
3D estimations for unlabeled data. Different from many other recent
works [5, 6, 7, 8, 9, 18, 19], here we consider a semi-supervised set-
ting; that is, besides limited labeled data, we are allowed to involve
a huge amount of unlabeled data to train the network. To handle
this new setting, our system includes two learning modules: a pose
estimation module, which estimates 3D poses from 2D poses, and a
dictionary learning module, which enables the supervision from un-
labeled data. The whole training procedure has two phases. In the
first phase, we train the pose dictionary learning module based on la-
beled data. In the second phase, we fix the pose dictionary learning
module and train the pose estimation module based on both labeled
and unlabeled data. Note that the pose dictionary learning module
is an auxiliary module that benefits the training of unlabeled data.
During the inference time, we only need the pose estimation module
to provide 3D estimations.

2.2. Object-Oriented Cylindrical Coordinate System

Before presenting our estimation model, we first introduce a syn-
chronized coordinate system to represent each 3D grasping pose.
The new coordinate system can make the estimation result equivari-
ant to the camera perspective. We firstly consider transforming the
camera coordinate xyz to an object-oriented Cartesian coordinate
system x′y′z′ , where the origin is the center of the object bounding
box and the axes are parallel to the edges. Then the proposed object-
oriented cylindrical coordinate (ρ, φ, z′) is defined based on x′y′z′.
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Fig. 2. Transformation from camera coordinate to the proposed
object-oriented cylindrical coordinate.

In this coordinate system, ρ is the distance to the z′ axis and φ is
the polar angle with respect to x′ axis. The whole transformation is
illustrated in Fig. 2.

As the definition intrinsically lays objects at the center, we only
consider the m hand joints in the final cylindrical coordinates. An-
other problem is the numerical representation of φ. For example,
−0.99π and 0.99π are almost the same angle but their numerical
values are quite different. Therefore, we use the sine and cosine
value to represent angles. Finally, a hand joint is represented by 4
elements (ρ, cos(φ), sin(φ), z′). For a 3D pose Y in the camera
coordinates, the whole transformation process is denoted as T (·):
h = T (Y) = vec(F(Y)) ∈ R4m, where F(·) denotes the trans-
formation from camera coordinate to the object-oriented cylindrical
coordinate, and vec(·) means the flatten operation to form a column
vector. This proposed object-oriented cylindrical coordinate is used
for the input and output of pose dictionary learning module in all two
training phases.

2.3. Phase I: Train Pose Dictionary Learning Module

We now present a pose dictionary learning module, which will be
used to enable unlabeled data to provide supervision signals. The
functionality of a pose dictionary learning module is to reconstruct
a 3D grasping pose through a trainable pose dictionary. When this
pose dictionary is well trained, the reconstruction error of an input
pose can reflect the realistic level of the 3D grasping pose. There-
fore, given unlabeled data, this pose dictionary can find unrealistic
3D estimation and provide supervision signals for the pose estima-
tion module.

We train the pose dictionary learning module through self-
reconstruction based on labeled data. As shown in Fig. 3, the pose
dictionary learning module is comprised of a trainable pose dic-
tionary D ∈ R4m×k and a pose encoder Enc(·, θe), where k is
the number of pose atoms and θe is the parameters of pose en-
coder. Each column vector in the pose dictionary is a trainable atom
that represents an elementary grasping pose. The pose encoder is
based on a multilayer perceptron model with residual connections.
In the labeled data, for a 3D pose Y , we firstly transform it to
the proposed object-oriented cylindrical coordinate: h = T (Y).
Then we input h to the pose encoder and get the coefficients c:
c = Enc(h; θe) ∈ Rk.

Note that the pose encoder Enc(·, θe) includes a softmax oper-
ation so that the sum of all elements of c equals 1. To reconstruct a
3D pose, we can use a linear combination of pose atoms to approx-
imate. Here c performs as the weight coefficients corresponding to
the atoms; that is, h̃ = Dc ∈ R4m. The reconstruction loss is
defined by the mean square error:

Lrec(HL) =
1

4m · |HL|
∑

h∈HL

‖D · Enc(h; θe)− h‖2

=
1

4m · |HL|
∑

h∈HL

∥∥∥h̃− h
∥∥∥2 , (1)

whereHL = {T (Y)|Y ∈ YL}.
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Fig. 3. Train the pose dictionary learning module based on labeled
data through an auxiliary self-reconstruction task.
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Y h T c h̃ ĥ Lrec Ldict
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Fig. 4. Train the pose estimation module with pose dictionary learn-
ing module fixed based on all data.

To ease the training of the pose dictionary D, we perform k-
means clustering on HL and initialize D with those cluster centers.
To ensure each pose atom is feasible, we put an additional loss on D
to constrain its elements in valid intervals. Specifically, elements for
sine and cosine values should lie in [−1, 1] and ρ values should be
no less than 0. Finally we define the valid dictionary loss Ldict by:

Ldict =
2

3|Dsc|
∑
d∈Dsc

I(d;−1, 1) + 1

3|Dρ|
∑
d∈Dρ

I(d; 0,+∞),

(2)
where Dsc is the set of sine and cosine elements in D, Dρ is the
set of ρ elements, and the interval loss function I(·) is defined as
I(d; dmin, dmax) = max(dmin − d, 0) + max(d− dmax, 0).

The final loss for training the pose dictionary learning module is:
Lpdl = Lrec(HL) + λdictLdict, where λdict is the weight for valid
dictionary loss and we empirically set it to a large value to make sure
pose atoms are valid.

To sum up, the pose dictionary learning module is comprised of
a trainable pose dictionary and a pose encoder. It performs the re-
construction of 3D poses while the reconstruction process is regular-
ized by the pose dictionary. By training the pose dictionary learning
module on the limited annotated data, we squeeze information about
feasible grasping poses into the pose dictionary. After the training is
finished, the reconstruction error of a given grasping pose can reflect
whether the input is realistic.

2.4. Phase II: Train Pose Estimation Module

The pose estimation module E(·; θp) is implemented based on an
adaptive graph U-net proposed by [8] with parameters θp. It takes
a 2D pose X as input and produces an estimated 3D pose, Ŷ =
E(X; θp).

To train this network, we consider supervisions from two as-
pects; see an overall illustration in Fig. 4. First, based on labeled
data, we consider a direct fully-supervised estimation loss (in the
camera coordinate xyz):

LL =
1

3(m+ 8) ·NL

∑
(X,Y)∈PL

‖E(X; θp)−Y‖2F , (3)

where |PL| = NL is the number of labeled data and ‖·‖F means
Frobenius norm.

Second, based on both labeled and unlabeled data, we consider
a self-supervision loss. We input all data to the pose estimation

module and obtain 3D estimations; we next represent those estima-
tions in the proposed object-oriented cylindrical coordinate; finally,
we input the transformed estimations to the fixed pose dictionary
learning module. Recall the definition of reconstruction loss in the
first training phase in Eq. (1). Simply changing HL to Ĥ, the re-
construction loss in the second training phase is: Lrec(Ĥ), where
Ĥ = {T (E(X; θp))|X ∈ X}.

Here we freeze the parameters of the pose dictionary learning
module and only update θp. When the reconstruction loss is large, it
reflects that the estimation result from the pose estimation module is
unrealistic and the well-trained pose dictionary learning module can-
not represent such 3D poses. Therefore, minimizing the reconstruc-
tion loss pushes the the pose estimation network to produce realistic
estimations. The reconstruction loss enables non-annotated data XU
to provide supervision signals.

The overall loss to train the pose estimation module is:

L = LL + λrLrec(Ĥ), (4)

where λr balances the two terms.

3. EXPERIMENTS

3.1. Datasets and Implementation Details

First-Person Hand Action Dataset(FPHA) [11] contains first-
person videos of hands manipulating various objects. A subset of it
(21501 frames) include 3D annotations of 21 hand joints and 8 ob-
ject bounding box corners. We remove the frames where the hand is
not in contact with the object. Finally we get 10388 frames for train-
ing and 9761 for evaluation. HO-3D [12] dataset contains videos
of hand-object interaction from third-person view. Here we use the
subset for seen-object setting and remove frames without contact.
As the frame rate is high, we take images every other frame in the
training set. We finally use 9467 frames for training and 6120 for
evaluation. For hand annotations, the evaluation set only provides
the wrist joints so we only evaluate on wrist joints. HO-3D dataset is
of low diversity, and some different video sequences are actually the
same period of action captured by multiple cameras from different
perspectives. Thus, the results of HO-3D is less convincing so we
mainly demonstrate the results of FPHA.

For both datasets, we sample 5% of the frames as the annotated
samples XL. As our method is based on single image, temporal
information of video data can affect our evaluation of the model’s
performance. To reduce the affection, we divide the videos into
subsequences of 5 frames each and randomly sample 5% of the sub-
sequences as XL. The pose encoder is an 8-layer MLP model with
(1024,256,256,1024,256,256,1024,k) hidden units in each layer.
Two shortcut connections are added between output of (1st,4th) and
(4th,7th) layers, similar to [20]. ReLU activation and batch normal-
ization are used after every layer except the last. We set λdict and
λr to 100 and the size k of pose dictionary is 30 by default. As
semi-supervised task is sensitive to the amount of data, we do not
perform pretraining on large scale synthetic dataset [6], which is
different from [8, 9].

3.2. Results

Primary results: Table 1 reports the results on FPHA and HO-3D
where Procrustes Aligned Mean Per Joint Position Error (MPJPE)
is used as the metric. Fig. 5 reports the Percentage of Correct Key-
points (PCK) on FPHA. We compare with following methods: (1)

3



Method FPHA HO-3D
Hand Object Hand Object

Fully supervision 8.77 14.31 54.94 32.17
5% supervision 14.00 25.19 59.09 36.12

BMC [21] 11.67 21.99 56.24 33.24
AE reconstructor 11.92 21.53 58.36 34.80

Ours 11.27 18.91 56.09 33.58

Table 1. MPJPE(mm) on FPHA and HO-3D. Best results in bold.
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Fig. 5. PCK on FPHA

Method Hand Object
Ours 11.27 18.91
L2 11.35 20.33

Table 2. Impact of Ldict

training the pose estimation module with all samples labeled (fully
supervision), which is the error lower bound; (2) training the pose
estimation module only by the 5% labeled data straightforwardly
(5% supervision), which is the error upper bound; (3) Biomechan-
ical Constraints (BMC) [21] method transplanted to our task; (4)
replacing the pose dictionary learning module with a vanilla autoen-
coder (AE reconstructor), which also performs the reconstruction
task. Compared to straightforward use of the limited labeled data,
our method significantly reduces the error. The proposed method
outperforms BMC on FPHA and acquires comparative results on
HO-3D. (HO-3D is less suitable for this task and its results is less
convincing.) Our method surpasses AE reconstructor, validating
the effectiveness of pose dictionary learning. As the annotated data
XL is selected from video sequences, we study the affection of
temporal information. We create pseudo-labels for XU by inter-
polation along time and train the pose estimation module by both
original and pseudo-labels. Finally we get dramatically large error
(>25mm/50mm) on hands/objects. It suggests that the affection of
temporal information is eliminated.

Constraints on Pose Dictionary: Table 2 studies the impact of
the constraints on pose dictionary Ldict on FPHA dataset. We re-
place Ldict with simple L2 regularization, which slightly increases
the errors. Therefore, we believe that constraining elements of D
in valid intervals can give feasible pose atoms and model the grasp-
ing poses better. In Fig. 6, we visualize several atom vectors from
learned pose dictionary D with Ldict or L2 regularization. The re-
sults show that our method learns a more feasible pose dictionary.

Robustness to hyperparameters: We study the robustness of
the proposed method with respect to important hyperparameters on
FPHA dataset. k, the number of pose atoms in D, makes direct and
significant impact on the reconstruction process in the pose dictio-
nary learning module. The pose dictionary helps model the grasping
poses more explicitly, which can be seen as regularization effect.
The regularization is strong when k is small. If k is too large, the
pose dictionary learning module gains high variance and may not be
able to constrain the estimation result effectively. Fig. 7 (a) reports
the impact of k. We set k in the moderate interval [10,60]. Our
method has achieved low estimation errors in this interval, showing
robustness to the choice of k. Another important hyperparameter
is λr , which controls the weight of reconstruction loss in the sec-

1,3,4,5,9,
15

4,6,12,
16

Fig. 6. Visualized examples of the learned pose dictionary. Left: our
method; right: replacing Ldict with L2 regularization. Our method
learns a more feasible pose dictionary.
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(b) Impact of λr
Fig. 7. Impact of k and λr . Our method shows robustness to choice
of the two hyperparameters.

ond training phase. As shown in Fig. 7 (b), our method performs
well when λr ∈ [10, 100]. The errors increase when the weight is
too large. We believe this is because the pose dictionary learning
module is not a perfect reconstructor. An overlarge weight for re-
construction loss forces the pose estimation module to approach an
imperfect target too much.

Ratio of labeled data: The ratio of labeled data is an important
factor and we study its impact on estimation accuracy. Fig. 8 reports
the MPJPE of all points. The proposed method (in red) is compared
with the straightforward use of labeled data (in blue) on various ra-
tios. The result shows our method can acquire stable accuracy gain.
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Fig. 8. MPJPE of all points (hands and objects) as a function of the
labeling ratio on FPHA. Lower bound of y axis is the error of fully
supervision. Our method (in red) acquires stable accuracy gain over
the straightforward use of labeled data (in blue).

4. CONCLUSION

For hand-object pose estimation task, detailed 3D labels are expen-
sive and labor-intensive. To tackle the data collection problem, we
propose a semi-supervised method based on pose dictionary learn-
ing. The proposed pose dictionary learning module performs an aux-
iliary reconstruction task. It enables unlabeled data to provide super-
vision signals for the pose estimation module by the reconstruction
error. We propose to use an object-oriented coordinate system to
make the estimation equivariant to the camera perspective. We show
that the proposed method improves estimation accuracy significantly
and is of high robustness.
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