
ar
X

iv
:2

10
2.

13
31

9v
1 

 [
cs

.C
V

] 
 2

6 
Fe

b 
20

21

DOMAIN ADAPTING ABILITY OF SELF-SUPERVISED LEARNING FOR FACE

RECOGNITION

Chun-Hsien Lin, Student Member, IEEE, and Bing-Fei Wu, Fellow, IEEE

National Chiao Tung University

Institute of Electrical and Control Engineering

1001 University Road, Hsinchu, Taiwan 300, ROC

ABSTRACT

Although deep convolutional networks have achieved great

performance in face recognition tasks, the challenge of do-

main discrepancy still exists in real world applications. Lack

of domain coverage of training data (source domain) makes

the learned models degenerate in a testing scenario (target do-

main). In face recognition tasks, classes in two domains are

usually different, so classical domain adaptation approaches,

assuming there are shared classes in domains, may not be

reasonable solutions for this problem. In this paper, self-

supervised learning is adopted to learn a better embedding

space where the subjects in target domain are more distin-

guishable. The learning goal is maximizing the similarity

between the embeddings of each image and its mirror in

both domains. The experiments show its competitive re-

sults compared with prior works. To know the reason why it

can achieve such performance, we further discuss how this

approach affects the learning of embeddings.

Index Terms— Face recognition, domain adaptation,

self-supervised learning

1. INTRODUCTION

With the growing of dataset and model capacity, the accuracy

of face recognition is getting higher. Face recognition has

been an efficient tool for authentication and has been widely

deployed to many applications. Even if a learned model can

perform nearly perfect in benchmark datasets, it may fail in

some scenarios. The primary reason is the domain discrep-

ancy between the training data (source domain) and testing

data (target domain). The factors causing the domain discrep-

ancy may be illumination, blur, pose, race, gender, or age.

Most training images are collected on Internet, which makes

the training set contain various domain information. How-

ever, only few samples come from same domain, so it is hard

to train a model with good generalization. A straight forward

solution is to fine-tune the learned model on target scenar-
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ios with labels. This approach is not practice, however, be-

cause labeling enough data is too expensive. Therefore, how

to leverage the unlabeled data in target domains becomes an

important issue, and this is what domain adaptation does.

Current approaches of domain adaptation [1] can be di-

vided into two main branches: adapting classifier and adapt-

ing embedding space. The former is tunning the classifiers

to adapt to the distribution in target domains. The later is

tunning the embedding functions (feature extractors) to find

a common embedding space where the distributions of tow

domains are aligned. As for the embedding distribution of

source domain, areas near the cluster centers are the high den-

sity places. Aligning the distributions of two domains is sim-

ilar to uniformly assigning the embeddings of target domain

to the classes of source domain, so both approaches are relied

on an assumption that source and target domains are shared

classes. Oppositely, in face recognition tasks, the classes are

different in domains. It is not reasonable to apply the ap-

proaches above to solve this unique problem. Despite the dif-

ferent preconditions, the techniques of embedding alignment

is still widely adopted in most existing works, [2][3][4][5][6],

to mitigate the domain shift of face recognition.

In this paper, to avoid using embedding alignment, we

use self-supervised learning to maximize the self-similarity

of each sample. In this way, the embedding distribution of

target domain is not aligned to the clusters of source domain,

but organizes itself. Tested in IJB-A [7], IJB-B [8], and IJB-C

[9] datasets, the proposed approach shows its ability of do-

main transfer. It is interesting that we find the improvement

is achieve by lowering inter-class similarity rather than en-

larging intra-class similarity. Unlike prior works, [2][3][10],

using larger models, like ResNet [11] or VGG [12], we use

MobileFaceNet [13] as the backbone. In spite of smaller ca-

pacity, the testing results in experiments are competitive and

even better. The contributions of this research can be sum-

marized into two parts. First, we propose a novel method to

perform domain transfer for face recognition. Second, we fur-

ther analyze the mechanism beyond the learning algorithm.
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2. RELATED WORK

2.1. Domain adaptation for face recognition

Because of the unique issues of face recognition, few re-

searches focus on domain adaptation for face recognition.

Some prior works, [4][5][6], adopt embedding alignment

methods to be the core algorithm directly, like Maximum

Mean Discrepancy (MMD), [14], or adversarial learning,

[15], which does not really reduce the domain shift existing

in face recognition. To compensate embedding alignment,

pseudo labels generated by clustering on target domain are

utilized to train another cluster distribution are proposed in

[2] and [3]. Arachchilage et al. [10] focus on the task of video

frames. With the identity consistency in a video, clustering

can be more accurate. After clustering, triplets are mined to

fine-tune the model with a modified triplet loss. However,

clustering relies on prior knowledges of class number or clus-

ter margin, which may be a non-trivial work when setting

these parameters.

2.2. Self-supervised learning

To leverage unlabeled data, some auxiliary tasks are de-

signed in training losses based on the prior knowledges of

data. For vision tasks, the simplest task is self-similarity.

Chen et al. [16] augment an image, and adopt contrastive

learning to minimizing their distances while maximizing the

distances among different images in the embedding space.

The method in [17] achieves better performance by adopting

cosine similarity with stop-gradient operation. Its transfer

ability is briefly illustrated, but it is limited. Therefore, we

mainly refer this research to design an adapting loss for face

recognition.

3. PROPOSED APPROACH

There are two datasets in our case. The source dataset (train-

ing dataset) is denoted as Xs = {xs
i , y

s
i }

N
i=1

, where xs
i is a

facial image in source domain, ysi is one-hot encoding label

for xs
i , and N is the number of source images. The target

dataset is denoted as Xt = {xs
j}

M
j=1

, where xt
j is a facial im-

age in target domain, and M is the number of target images.

For convenience, an arbitrary image, a source image and a

target image are denoted as x, xs and xt respectively.

3.1. Learning embeddings

High recognition accuracy replies on a good embedding func-

tion. The purpose of an embedding function f(x) is map-

ping images on a lower dimensional space where embeddings

from same classes are closer while embeddings from different

classes are farther. We can train an embedding function with

an extra classifier, ŷ(f(x)), by cross entropy, which is simple

and robust. The cross entropy loss is defined as:

Lc = −

N∑

i=1

ysi log ŷ(f(x
s
i )) (1)

Since training dataset is usually large, to accelerate the con-

vergence, focal loss [18] is adopted to encourage the learning

of hard samples, so the loss can be modified as:

Lc = −

N∑

i=1

(1− ŷ(f(xs
i )))

γysi log ŷ(f(x
s
i )) (2)

where γ is a parameter for weighting down the loss caused by

easy samples, and it is set to 2 according to [18]. Also, metric

learning policies, like [19][20][21], can be applied to train a

better embedding function.

3.2. Self-supervised learning for domain transfer

According to the studies in [16], minimizing the distances be-

tween the embeddings from random cropped and color dis-

torted images can achieve the best result. However, applying

color distortion may cause the racial bias, and we do not find

obvious difference between using mirroring and random crop-

ping in experiments. For each image, x, we only use it and

its mirror, x′, for training, so a self-supervised learning loss

called SimSiam [17] can be expressed as:

Ls =
1

2
[D(h(z′), ϕ(z)) +D(h(z), ϕ(z′))] (3)

D(p, z) = −
pT z

‖p‖‖z‖
(4)

where z = f(x), z′ = f(x′), ϕ is a stop-gradient operation,

and D(p, z) is a function for computing the cosine similarity

between embeddings p and z. Specially, h is a head which

remap the embeddings in another view, and its effectiveness

has been discussed in [16] and [17].

To perform domain adaptation, we apply the loss on both

source and target datasets and sum them up by a ratio which

we call it adapting ratio, ρ. Thus, the loss is expressed as:

La = (1 − ρ)Ls(x
s) + ρLs(x

t) (5)

where ρ controls the weights of SimSiam loss on two do-

mains. For the purpose of domain transfer, it is reasonable

to set the value of ρ larger than 0.5 a little bit. Since the loss

only focus on self-similarity, it is necessary to use cross en-

tropy loss to maintain the inter-class discrepancy. The total

loss is defined as:

L = Lc + La (6)

We call it SimSiam Adapting (SSA) Loss, and use it to do the

experiments in the next section.



4. EXPERIMENTS

4.1. Datasets

In the experiments, CASIA-WebFace [22] is utilized to be the

source dataset. It contains 10,575 identities and 494,414 im-

ages which are the pictures of celebrities on Internet. As for

the testing datasets, we use IJB datasets, including IJB-A/B/C

[7][8][9]. IJB datasets contain mixture of images and videos

in the wild. The conditions are all challenging due to blurry

frames and large pose variations. IJB-A [7] contains 500 iden-

tities with 5,396 images and 20,412 video frames. IJB-B [8]

extended from IJB-A contains 1,845 identities with 11,755

images and 7,018 videos, and 10,044 non-face images. IJB-C

[9] extended from IJB-B contains 3,531 identities with 21,294

images and 11,779 videos, and 10,040 non-face images.

We follow the protocols in [7] to evaluate the perfor-

mance of verification, open-set and close-set identification,

and there metrics are True Positive Rate vs. False Positive

Rate (TPR@FAR), True Positive Identification Rate vs. set

False Positive Identification Rate (TPIR@FAIR), and top-K

accuracy (Rank-K) respectively.

4.2. Implementation detail

Cross entropy loss (2) is applied to train MobileFaceNet [13]

from scratch by CASIA-WebFace dataset [22]. The training

epoch and batch size is set to 50 and 128 respectively. The

learning rate is set to 0.1 and is divided by 10 every 12 epoch.

The trained model is the baseline for domain adaptation, and

its performance is the baseline in the experiments.

We treat all images in IJB-A dataset [7] as the target

dataset, so most images in IJB-B and IJB-C are not covered.

As the unlabeled data from a target dataset are mixed in, the

learning rate is decayed to be 0.0001 to protect the learned

knowledge. The training epoch, batch size and learning rate

schedule are preserved, but the epoch is counted based on

the size of the target dataset, which induces less training it-

erations. For each batch, 128 images are sampled from each

dataset.

The head, h, used in SimSiam loss is a two-layer neu-

ral network, and the number of hidden neurons is set to 32

which is 4 times less than the embedding dimension of Mo-

bileFaceNet [13]. According to [17], we add batch normaliza-

tion and rectified linear unit in the hidden layer to guarantee

its performance.

Table 1. Evaluations on IJB-A [7] with different ρ.

Method
Verification TPR (%) Identification TPIR (%)

FPR=0.001 FPR=0.01 FPR=0.1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-10

Baseline 75.63 90.54 96.88 65.31 85.74 94.79 97.91

ρ = 0.0 79.37 90.93 96.86 71.59 87.85 94.57 97.85

ρ = 0.5 80.78 91.03 96.70 73.23 87.82 94.74 97.78

ρ = 0.6 82.13 91.45 96.39 75.77 87.92 93.99 97.63

ρ = 0.7 79.57 90.86 96.28 70.11 86.71 94.13 97.63

ρ = 0.8 78.29 90.08 95.99 68.12 85.76 93.93 97.19

ρ = 0.9 74.33 90.12 96.06 64.36 84.91 93.72 97.24

4.3. Ablation study

It is more efficient to use smaller dataset to evaluate the

trained models in ablation study, so only IJB-A dataset [7] is

adopted in this part of experiments.

4.3.1. Adapting ratio

To find out the proper adapting ratio, ρ, we vary its value,

and compare with the baseline. The comprehensive results

are listed in Table 1. It is obvious that the performances

of verification at lower FPR and open-set identification are

increased. Adopting SimSiam loss [17] directly on source

dataset only, ρ = 0.0 can achieve some improvements, which

shows its competency of generalization. Since larger weight-

ing on target domain may limit the cluster learning relying

on the supervision of source data and labels, overemphasis of

learning self-similarity on target domain cannot preserve the

inter-class discrepancy. As for verification at higher FPR and

close-set identification, there is no improvement. Our hypoth-

esis for this issue is discussed in the next part. According to

the results in Table 1, we choose ρ = 0.6 as our best parame-

ter setting.

4.3.2. Embedding analysis

How the embedding spaces are learned is discussed here. We

compare the embedding distributions of the baseline, source-

only case, ρ = 0.0, and the best case, ρ = 0.6. The averages

of three similarities (mirror, intra-class, and inter-class) and

embedding length are carried out in Table 2.

Although the mirror similarities are increased with the

guidance of SSA, there is no obvious changes on intra-

class similarities, but they are a little bit lower. Oppositely,

the inter-class similarities are reduced, and the embedding

lengths are also enlarged, which implies the discrepancies

among identities are increased. Since higher TPR or TPIR

at lower FPR and FPIR requires lower inter-class similarity,

SSA can do better under these protocols. Due to giant nega-

tive pairs in the protocols, the significant improvements can

be achieved by little decay on inter-class similarity. On the

other hand, higher TPR at higher FPR or Rank-K requires

much higher intra-class similarity, so this is the reason why

SSA fails under these protocols.

Table 2. Statistics of embedding metrics in IJB-A dataset [7].

Method
Similarity

Embedding Length
Mirror Intra-class Inter-class

Baseline 0.9478 0.7074 0.0728 113.89

SSA (ρ = 0.0) 0.9583 0.6915 0.0199 119.68

SSA (ρ = 0.6) 0.9547 0.6905 0.0166 119.55



Table 3. Verification performance on IJB-A [7], IJB-B [8], and IJB-C [9]. The bold texts stand for the highest TPIR in a

column. The text with underline means it is better than baseline.

Method
IJB-A TPR (%) IJB-B TPR (%) IJB-C TPR (%)

FPR=0.0001 FPR=0.001 FPR=0.01 FPR=0.1 FPR=0.0001 FPR=0.001 FPR=0.01 FPR=0.1 FPR=0.0001 FPR=0.001 FPR=0.01 FPR=0.1

Sohn et al. [5] - 58.40 82.80 96.20 - - - - - - - -

IMAN-A [3] - 84.49 91.88 97.05 - - - - - - - -

CDA(vgg-soft) [2] - 74.76 89.76 98.19 - - - - - - - -

CDA(res-arc) [2] - 82.45 91.11 96.96 - 87.35 94.55 98.08 - 88.06 94.85 98.33

SoftMaxa 52.23 75.63 90.54 96.88 68.91 83.61 93.43 98.22 74.04 86.44 94.59 98.54

ArcFaceb [19] 72.60 84.82 92.18 96.11 77.29 87.18 94.25 98.26 81.33 89.75 95.35 98.48

SSA-SoftMax (ours) 62.51 82.13 91.45 96.39 71.22 84.88 93.78 98.21 75.61 87.47 94.92 98.47

SSA-ArcFace (ours) 78.18 87.37 92.41 95.84 78.48 88.27 94.88 98.49 82.72 90.91 95.90 98.62

aThis is baseline model trained by cross entropy on source dataset only.
bThis is another baseline model trained by the guidance of margin penalty proposed in [19].

Table 4. Identification performance on IJB-A [7], IJB-B [8], and IJB-C [9]. The bold texts stand for the highest TPIR in a

column. The text with underline means it is better than baseline.

Method
IJB-A TPIR (%) IJB-B TPIR (%) IJB-C TPIR (%)

FPIR=0.01 FPIR=0.1 Rank-1 Rank-10 FPIR=0.01 FPIR=0.1 Rank-1 Rank-10 FPIR=0.01 FPIR=0.1 Rank-1 Rank-10

Sohn et al. [5] - - 87.90 97.00 - - - - - - - -

IMAN-A [3] - - 94.05 98.04 - - - - - - - -

CDA(vgg-soft) [2] 66.85 85.32 94.89 99.23 - - - - - - - -

CDA(res-arc) [2] 75.49 87.76 93.61 97.62 - - 86.22 93.33 - - 88.19 93.70

SoftMaxa 65.31 85.74 94.79 97.91 59.77 77.10 88.01 95.22 58.86 76.49 88.93 95.07

ArcFaceb [19] 78.99 88.75 94.58 97.50 66.22 81.23 89.49 95.37 70.49 81.87 90.61 95.60

SSA-SoftMax (ours) 75.77 87.92 93.99 97.63 58.74 77.51 86.98 94.41 57.24 77.69 87.92 94.50

SSA-ArcFace (ours) 80.03 89.47 94.26 97.40 64.47 82.48 89.31 95.23 69.80 83.68 90.50 95.47

aThis is baseline model trained by cross entropy on source dataset only.
bThis is another baseline model trained by the guidance of margin penalty proposed in [19].

4.4. Benchmark comparison

To guarantee the effectiveness of SSA, it is compared with

the state-of-the-arts focusing on domain adaptation for face

recognition. We also use a margin penalty method (ArcFace)

proposed in [19] to train our backbone to be another baseline.

The comprehensive evaluations on IJB-A [7], IJB-B [8], and

IJB-C [9] are listed in Table 3 and Table 4.

From Table 3, we can observe that SSA can successfully

improve the baselines on all benchmarks under almost all

FPRs especially under lower FPRs. With the guidance of

ArcFace [19], the performance can be better. However, in

the identification protocols, Table 4, the improvements only

exists on open-set protocols. Such issue has been discussed

in 4.3. Since the models are adapted on IJB-A only [7], the

performances of on the open-set protocols of IJB-B [8] and

IJB-C [9] are not that good, but it can be further refined by

adapting more data from these datasets. Expect for close-set

identification protocols, compared with the state-of-the-arts,

our approach shows its good performance by not only the im-

provements but also the much lighter backbone.

5. CONCLUSION

We focus on the unique problem of domain discrepancy in

face recognition whose classes in domains are non-overlapping.

Self-Supervised Adapting (SSA) loss is proposed in this pa-

per. By adding an adapting ratio between the self-similarity

losses on source and target domain, SSA can successfully im-

prove the baseline models both verification and open-set iden-

tification protocols. Interestingly, we find that this progress

is achieved by reducing inter-class similarities rather than

increasing intra-class similarities through the analysis on

the embedding distributions. Compared with other adapt-

ing methods under comprehensive protocols, SSA shows its

competitive performance. However, it seems that SSA cannot

preserve or even improve the intra-class similarity on target

domain, so some advanced researches should be done in the

future to compensate this problem.
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