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ABSTRACT

Aerial-to-ground image synthesis is an emerging and challenging
problem that aims to synthesize a ground image from an aerial im-
age. Due to the highly different layout and object representation
between the aerial and ground images, existing approaches usually
fail to transfer the components of the aerial scene into the ground
scene. In this paper, we propose a novel framework to explore the
challenges by imposing enhanced structural alignment and semantic
awareness. We introduce a novel semantic-attentive feature trans-
formation module that allows to reconstruct the complex geographic
structures by aligning the aerial feature to the ground layout. Fur-
thermore, we propose semantic-aware loss functions by leveraging a
pre-trained segmentation network. The network is enforced to syn-
thesize realistic objects across various classes by separately calcu-
lating losses for different classes and balancing them. Extensive ex-
periments including comparisons with previous methods and abla-
tion studies show the effectiveness of the proposed framework both
qualitatively and quantitatively. The code is publicly available at
https://github.com/jinhyunj/SANet.

Index Terms— Aerial-to-ground image synthesis, transforma-
tion, semantic segmentation

1. INTRODUCTION

Aerial-to-ground image synthesis aims to predict corresponding
ground-view image at a given aerial-view image. It has received
significant attention in the computer vision community as it can
be applied to various media industries, including wide-area virtual
scene generation, 3D simulation, and gaming. However, it is a
very challenging task since the aerial and ground images have an
extremely different viewpoints, which makes the scene layouts and
object representations in the two images completely different.

Recently, there have been attempts [1, 2, 3, 4, 5] to solve the
problem by leveraging generative adversarial networks (GANs) [6,
7]. Few methods [1, 2] impose a ground semantic map as a condi-
tional input for the ground image. However, these methods require
semantic maps at the testing phase and the synthesized images are
strongly conditioned on them, as in example-guided image synthe-
sis methods [8, 9]. Deng et al. [3, 4] adopted conditional GANs [7]
that use vector representation extracted from aerial image to pro-
duce an appropriate ground image. Regmi and Borji [5] proposed
two models (X-Fork and X-Seq) that jointly generate ground im-
ages and corresponding semantic maps. Although these works have
shown plausible results, they do not handle the structural difference
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Fig. 1. Overview of our proposed framework. Our aerial-to-
ground generator is composed of an aerial encoder, a semantic-
attentive feature transformation module, and a ground decoder.
It synthesizes a panoramic ground image given an aerial image.
The generator is trained using auxiliary ground autoencoder and
semantic-aware loss functions.

between the viewpoints or separately consider objects in different
semantic classes, resulting in limited performance in difficult scenes
which contain multiple objects and complex layout.

Other methods [10, 11, 12] focus on transformation to convert
the aerial scene layout into ground perspective. They reduce the
geometric difference between two views and mitigate the structural
deformation problem. Zhai et al. [10] proposed to learn a transfor-
mation matrix that turns aerial image into ground-view panorama
image. Regmi and Borji [11] applied homography transformation to
the aerial images and use them as inputs to synthesize the ground
images. These methods adopt coarse alignments of the entire scene
layout and often fail to capture detailed transformations, yielding
unsatisfactory results. Lu et al. [12] proposed a differentiable geo-
transformation layer based on orthogonal projection and panoramic
rays by using aerial semantic and depth maps. While this method has
achieved great success, it is restricted to cases where a large number
of ground truth semantic and depth maps are available.

In this paper, we propose a novel framework that imposes en-
hanced structural alignment with semantic awareness for aerial-to-
ground image synthesis. We argue that handling the entire scene at
once is insufficient for this complex synthesis problem and therefore,
explore semantically different object respectively. To be specific,
we introduce a semantic-attentive feature transformation module to
align the aerial features into the ground layout. By exploiting at-
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Fig. 2. Illustration of the proposed transformation module and semantic-aware loss function. (a) Our transformation module aligns the
structure of the aerial feature to the ground by applying transformation with respect to the semantic classes. (b) Semantic awareness of our
generator is enforced by a novel loss function which balances the losses across the semantic class.

tention mechanism [13], it separately transforms the features with
different semantic representations to achieve better alignment. Fur-
thermore, we present semantic-aware loss functions to handle the
objects across the various semantic classes. Being aware that ob-
jects with different classes appear in uneven number of pixels and
scenes, we balance the losses for different classes by leveraging a
pre-trained semantic segmentation network. Experimental results on
CVUSA [14] and CVACT [15] datasets demonstrate the effective-
ness of the proposed method.

2. PROPOSED METHOD

Fig. 1 illustrates our overall framework. Our goal is to train a deep
network that synthesizes a plausible ground panorama image Ig
given an aerial image Ia. Based on intuition that the overall layouts
and semantics for different objects should be considered for synthe-
sizing realistic images [16], we propose a semantic-attentive feature
transformation module and semantic-aware loss functions.

2.1. Network Architecture
Our aerial-to-ground synthesis network, i.e., generator, is composed
of an aerial encoder Ea : Ia → fa for mapping aerial image into
feature space, a semantic-attentive feature transformation module
Tag : fa → fag for modeling the structural changes of feature, and a
decoder Gg : fag → I ′g for synthesizing the ground image. During
training, we adopt an auxiliary ground encoder Eg : Ig → fg that
maps ground image into feature space, and a pre-trained segmenta-
tion network Sseg that extracts semantic map from ground images.

Semantic-Attentive Feature Transformation Module. The pro-
posed semantic-attentive transformation module Tag is illustrated in
Fig. 2(a). It learns a structural transformation from fa to fag , where
fag has structure aligned to Ig . Rather than solely depending on
an implicit learning of the transformation [10], we perform initial
coarse alignment using polar transformation [17] to generate fp.

Since objects with different classes are likely to locate in differ-
ent areas [18] (e.g., sky occupies the upper part of an image whereas
road occupies the bottom), we employ semantic-attentive transfor-
mation that separately handles alignment of objects in different class.
Specifically, we generate channel attentions [13] {Mi}ci=1 for c se-
mantic classes and apply them to fp. For further alignment, we feed
them into subsequent warping blocks {Di}ci=1, each of which con-
sists of a deformable convolution layer [19] and a convolution layer.
By summing all the attentively aligned features {f i

ag}ci=1, the final

semantic-attentive transformed feature fag is obtained.

Auxiliary Networks. The ground encoder Eg , along with Gg , oper-
ate as an autoencoder [20], i.e., Eg extracts feature fg from Ig and
Gg reconstructs the ground image I rec

g . It encourages Eg to extract
rich ground-specific feature fg with sufficient representations to re-
construct ground images. We use fg as a reference for fag , thereby
guide Ea to extract representative features for synthesizing I ′g , as
well as Tag to better model the structural transformations without
3D information [12]. We use separate parameters for Ea and Eg to
encourage higher flexibility and capacity in feature extraction [21].

A pre-trained semantic segmentation network Sseg takes ground
image Ig as an input and outputs a semantic segmentation mask
Sg . We use it to improve the semantic-awareness of the generator
through semantic-aware losses, presented in the following section.
2.2. Loss functions

Semantic-Aware Synthesis Loss. In order to synthesize plausible
ground images, objects across various classes should be considered.
Here, we observe uneven number of pixels for different objects in
the cross-view image datasets [14, 15] as reported in Fig. 5. This is
mainly due to the different sizes of the objects and a prevailing num-
ber of scenes without a man-made object. It leads the regular L1
loss between the ground-truth and synthesized images to be domi-
nated by the prevailing objects. Consequently, the model often fails
to synthesize the objects across various semantic class.

To alleviate this problem, we balance the losses across the se-
mantic classes by exploiting Sg . Concretely, we compute L1 loss
for each class independently using the segmentation mask and aver-
age them with their own number of pixels as illustrated in Fig. 2(b).
Our novel semantic-aware synthesis loss is defined as

LSyn =
c∑

i=1

wi

Ni

∥∥∥Si
gIg − Si

gI
′
g

∥∥∥
1
, (1)

where Ni and Si
g are the number of pixels and class-mask for class

i. We further use wi as class balancing weight [22, 23] to handle a
prevailing number of scenes without a man-made object.

Semantic-Aware Feature Loss. Similar to semantic-aware synthe-
sis loss, we use downsampled Sg and apply separate loss functions
for each semantic-attentive branch in the transformation module as

LFea =

c∑
i=1

wi

Ni

∥∥∥Si
gfg − Si

gf
i
ag

∥∥∥
1
, (2)



(a) Input (b) Pix2Pix (f) Ground Truth(c) X-Fork (d) X-Seq (e) Ours

Fig. 3. Qualitative comparison on CVUSA dataset.

(a) Input (b) Pix2Pix (f) Ground Truth(c) X-Fork (d) X-Seq (e) Ours

Fig. 4. Qualitative comparison on CVACT dataset.
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Fig. 5. Class distribution on CVUSA [14] and CVACT [15]
datasets. We state the number of pixels for each class. Sky and veg-
etation are prevailed in the datasets whereas the man-made is few.

so that each channel attention is learned to highlight class-specific
features and enables an effective learning of the transformation.

Semantic Consistency Loss. To enforce the semantic consistency
in the synthesized image, we constrain the semantic differences be-
tween the synthesized image and the ground truth image, defined as

LSem =
∥∥Sg − S′

g

∥∥
1
, (3)

where S′
g is output of Sseg with I ′g as input. Different from the pre-

vious works [1, 5, 12], the parameters in Sseg are fixed when training
the generator. It further encourages the synthesized objects to have
similar appearance as the ground truth images Sseg is trained on.

Ground Image Autoencoding Loss. In order to train Eg to ex-
tract ground-representative features fg , and Gg to synthesize realis-
tic ground images upon the feature, we adopt L1 reconstruction loss
between Ig and I rec

g as
LAE =

∥∥Ig − I rec
g

∥∥
1
. (4)

Adversarial Loss. Similar to the previous works for image syn-
thesis [24, 25], we encourage the synthesized images to be indistin-
guishable from the real images by adopting a discriminator D and
applying an adversarial loss as

LAdv = EIg logD(Ig) + EI′g log(1−D(I ′g)). (5)

Overall Loss. In summary, our full objective is defined as
L = λSynLSyn + λFeaLFea + λSemLSem

+λAELAE + LAdv,
(6)

where λSyn, λFea, λSem and λAE are hyper-parameters that control the
weights between the different loss terms.

3. EXPERIMENTS

3.1. Implementation and Experimental Settings

Network Architecture. We adopt the architecture from Zhu et
al. [25] for our generator and discriminator. Specifically, we com-

pose the encoders and decoder with 4 and 5 residual blocks [26]
respectively. We use SegNet [27] architecture for Sseg.

Datasets. We conduct experiments on two commonly used cross-
view image datasets, CVUSA [14] and CVACT [15], each contain-
ing 35,532/8,884 and 35,532/92,802 train/test image pairs. We apply
pre-processing to adjust aerial images into a similar scale and ex-
clude ground image areas with large panoramic distortions. Then we
resize the aerial and ground images into 256× 256 and 128× 512.
For both datasets, we use Sseg trained on CVUSA dataset, with the
segmentation maps provided by [10] as pseudo label which contains
four classes of sky, man-made, road and vegetation.

Training Details. We set the class balancing weights wi in (1)
and (2) as 0.5, 2, 1, and 1 for sky, man-made, road, and vegeta-
tion classes, respectively. We aim to handle the scarcity of the
man-made class and avoid the network being overfitted to the
ground-truth sky representation. We set the loss weights in (6)
as λSyn = 10, λFea = 2, λSem = 2, and λAE = 5. We use Adam
optimizer [28] with momentum parameters 0.5 and 0.999, and fixed
learning rate of 0.0002. The network parameters are initialized with
normal distribution with zero mean and 0.02 standard deviation. We
do not perform any data augmentation and train our network for 30
epochs with batch size of 4. All the experiments are conducted using
Pytorch [29] library, on a single NVIDIA RTX 2080Ti X GPU.

Evaluation Protocols. For quantitative evaluations, we follow
the protocols presented in [5]. We measure the visual quality of
the synthesized images by Peak-Signal-to-Noise Ratio (PSNR),
Structural-Similarity Index (SSIM), and Sharpness Difference (SD)
with ground-truth image. We also measure the realism and diversity
of the synthesized images by Inception Score (IS), Top-k prediction
accuracy, and KL divergence. We additionally evaluate the pixel-
wise semantic consistency of the synthesized images using mean
Intersection-over-Union (mIoU).

3.2. Comparison with State-of-the-Art Methods

We compare the proposed method with Pix2Pix [24], X-Fork [5],
and X-Seq [5]. Since these methods handle input and output im-
ages of same shapes, we apply few modifications. We change the
bottleneck kernel size from (4, 4) to (1, 4) and use unconditional
discriminator. We also remove the skip connections in Pix2Pix [24].
Except the above modifications, we follow the original settings.

We present qualitative results in Figs. 3 and 4. Compared to
the previous methods [24, 5], we observe that our method shows the
most visually plausible results. Specifically, our results show the
clearest image appearance and consistent layout with the ground-
truth images. It demonstrates that our semantic-attentive feature
transformation module successfully aligns the intermediate features



Table 1. Quantitative evaluation of PSNR, SSIM, Sharpness Difference, KL Loss and mIoU.

Methods CVUSA CVACT

PSNR SSIM SD KL mIoU PSNR SSIM SD KL mIoU

Pix2Pix [24] 19.0631 0.3864 17.8758 4.64±1.18 0.3013 19.5376 0.4022 17.4920 3.64±0.93 0.3048
X-Fork [5] 19.7425 0.4106 18.1640 4.91±1.24 0.2962 20.1629 0.4134 17.7542 3.55±0.90 0.3005
X-Seq [5] 19.6859 0.4292 18.2379 6.42±1.38 0.2944 18.8307 0.4062 17.6511 4.13±1.03 0.2798

Ours 19.6604 0.4363 18.2497 3.66±1.04 0.3068 19.6944 0.4168 17.9001 3.44±0.93 0.3118

Table 2. Quantitative evaluation of inception score and classification accuracy.

Methods

CVUSA CVACT

Inception score Accuracy Inception score Accuracy

All Top-1 Top-5 Top-1 Top-5 All Top-1 Top-5 Top-1 Top-5

Pix2Pix [24] 2.2454 2.0252 2.2045 29.43 67.66 1.7930 1.6808 1.8094 23.48 65.05
X-Fork [5] 2.4556 2.1217 2.4857 29.82 69.99 1.9412 1.7042 1.9686 25.41 67.03
X-Seq [5] 2.2055 2.0558 2.1902 24.83 63.70 2.1648 1.7772 2.1115 19.88 57.39

Ours 2.5367 2.1429 2.5087 34.48 72.58 2.1762 1.8577 2.1293 26.24 63.78

Real Data 3.2930 2.5634 3.2235 - - 2.4226 2.0046 2.4087 - -

(a) Input (b) w/o ��� (f) Ground Truth(c) w/o {ℒ���, ℒ	
�} (e) Ours(d) w/o ℒ�
�

Fig. 6. Qualitative ablation study results on CVUSA dataset.

Table 3. Quantitative ablation study results on CVUSA dataset.

Setup CVUSA

SSIM KL IS (All) mIoU

w/o Tag 0.4246 5.47±1.21 2.4838 0.2823
w/o {LSyn,LFea} 0.3884 5.77±1.29 2.4989 0.2790
w/o LSem 0.4217 3.85±1.29 2.5501 0.2939
Ours 0.4363 3.66±1.04 2.5367 0.3068

to the ground layout by focusing on every different semantic class.
We also observe that the proposed method synthesizes plausible re-
sult across various objects, while others failed (e.g., buildings). This
confirms that our semantic-aware loss functions allow the network
to handle objects across various classes.

Quantitative results are presented in Tables 1 and 2. The pro-
posed method outperforms the previous methods in all the quanti-
tative measures except for PSNR. Although our PSNR results are
slightly lower compared to X-Fork [5], we achieve higher visual
quality scores (KL and IS), showing that our method generates more
realistic images. In addition, we can see that our method results in
the highest mIoU score which verifies that our framework generates
the most semantically consistent images with the ground truth.

3.3. Ablation Study

To investigate the importance of the key components in our frame-
work, we conduct experiments on our method without Tag , without
{LSyn, LFea}, and without LSem on CVUSA dataset. Results are pre-
sented in Table 3 and Fig. 6.

For the setup w/o Tag , we only apply polar transformation to fa

and do not use any loss function for the transformed feature. For
the setup w/o {LSyn, LFea}, we use regular L1 loss for images and
features. We observe that the networks with those setups generate
the synthesized images that have unclear structure alignment and are
not realistic, compared to our full framework. This observation coin-
cides with the quantitative results, indicating that both components
largely affect the results and should be applied cooperatively. For
the setup w/o LSem, both the qualitative and quantitative results show
minor difference from our full framework. It demonstrates that our
transformation module, together with semantic-aware loss functions
sufficiently align the structure and enhance semantic awareness to
the network, thereby enforcing the semantic consistency in the syn-
thesized image.

4. CONCLUSION

In this paper, we proposed a novel framework for aerial-to-ground
image synthesis through enforcing the semantic awareness of the
network. The proposed semantic-aware network contains a novel
semantic-attentive feature transformation module and is trained
with semantic-aware loss functions. The transformation module is
modeled to align the structures of every object into the correspond-
ing ground layout. Semantic awareness is further enhanced by the
proposed loss functions designed to independently calculate losses
across every semantic. By handling every semantic categories re-
spectively, our approach succeeded in synthesizing plausible ground
image from given aerial image. Extensive experimental results
demonstrate the effectiveness of the proposed method in terms of
realism and semantic consistency of the synthesized images.

This research was supported by the Yonsei University Research Fund of
2021 (2021-22-0001).
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