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ABSTRACT

This works explores the benefits of structured parameter prun-
ing in the framework of the MPEG standardization efforts for
neural network compression. First less relevant parameters
are pruned from the network, then remaining parameters are
quantized and finally quantized parameters are entropy coded.
We consider an unstructured pruning strategy that maximizes
the number of pruned parameters at the price of randomly
sparse tensors and a structured strategy that prunes fewer pa-
rameters yet yields regularly sparse tensors. We show that
structured pruning enables better end-to-end compression de-
spite lower pruning ratio because it boosts the efficiency of
the arithmetic coder. As a bonus, once decompressed, the
network memory footprint is lower as well as its inference
time.

Index Terms— Pruning, Deep learning, Compression,
MPEG-7

1. INTRODUCTION

Deep neural networks achieve top-notch performance in a
number of challenging multimedia-related tasks thanks to
topologies with millions of learnable parameters. For ex-
ample, the parameters count of popular architectures such
as AlexNet, VGG or ResNet is in the order of the tens or
hundreds of millions. These numbers pose serious challenges
in a number of practical scenarios. For example, large ar-
chitectures may just not fit in embedded devices such as
smartphones where the storage and run-time memory are
limited. In federated learning scenarios, where the nodes
must frequently exchange the learned parameters, the achiev-
able learning rate may be bounded by the available bandwidth
between nodes [1].

The need for compressing deep neural networks (DNNs)
prompted the Moving Pictures Experts Group (MPEG) of the
International Organization for Standardization (ISO) to de-
fine the upcoming MPEG-7 Part 17 standard Compression of
neural networks for multimedia content description and anal-
ysis [2]. The MPEG neural network compression pipeline
includes three stages. First, the number of parameters in the
neural network is preliminary reduced, e.g. pruning away dis-
posable parameters and yielding a sparse network topology.
Second, the parameters that survived pruning are quantized

over a finite set of values. Third, the quantized parameters are
entropy coded with context adaptive arithmetic coding [3],
producing a compressed bitstream. Experiments show that
favorable trade-off between compression efficiency and per-
formance could be stricken [4].

While quantization and entropy coding has received more
attention, the role of the parameter pruning has not been
fully explored. Unstructured pruning approaches maxi-
mize the number of pruned parameters (for a given per-
formance target) without constraints on the resulting tensor
topology [5, 6, 7, 8, 9, 10, 11]. These approaches usually
deliver top pruning ratio, i.e. fraction of pruned parameters,
at the price of randomly sparse parameter tensor. Struc-
tured approaches rely on some constraints on the pruning
to impose a somewhat regular structure over the pruned
topology [12, 13, 14]. These approaches may yield network
representations that are easier to hold into memory, i.e. lower
run-time memory footprint, despite the pruning ratio is usu-
ally lower in reason of the additional constraint. However, the
effect of the pruned scheme and the resulting tensors structure
on the efficiency of a complete neural network compression
pipeline is not totally understood.

In this work we investigate the benefits of structured
pruning approaches within MPEG neural network compres-
sion pipeline. We describe two pruning strategies that both
prune parameters that are less relevant to the network per-
formance: the first approach just aims at maximizing the
pruning ratio, whereas the second relies on a regulariza-
tion term that imposes a structure on the pruned network
topology. We experimentally show that, while the struc-
tured approach achieves lower pruning ratio, it yields better
end-to-end compression efficiency. We hypothesize that the
structured topology of the pruned neural network is the key
to higher efficiency of the entropy coder. As a bonus, the
network topology is also easier to represent in memory once
the network is decompressed, plus inference time is lower
as entire operations among tensors are avoided, as we show
experimenting on Android devices.

2. BACKGROUND ON NETWORK PRUNING

Parameter pruning builds upon the knowledge that neural net-
works need to be over-parametrized to be trained on a number
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Fig. 1: Our experimental setup; the parts within the dashed box are the object of the MPEG-7 part 17 standard.

of tasks [15, 16]. One-shot [9, 17] methods train to comple-
tion the full, over-parameterized network, they prune it with
some heuristic (e.g. magnitude thresholding) and finally they
fine-tune it to recover the accuracy lost due to the pruning
stage. A recent work by Frankle and Carbin [9] proposed the
lottery ticket hypothesis, which is having a large impact on
the research community. From a DNN, early in the training,
it is possible to extract a sparse sub-network on a one-shot
fashion: such sparse network, when trained, can match the
accuracy of the original model. Gradual pruning methods,
instead, train and prune the model simultaneously, spanning
a large number of pruning iterations [8, 11, 13, 14]. A recent
work compared these two approaches, showing the benefits
of iterative pruning in terms of number of parameters of the
pruned network [18]. In this work, we target iterative pruning
approaches, which can be further divided into two categories.

Unstructured pruning techniques aim at maximizing the
pruning ratio, i.e. the number of parameters pruned from the
network, regardless of the resulting topology [7, 8]. Dropout-
based approaches like sparse variational dropout, leverage on
a Bayesian interpretation of Gaussian dropout promoting un-
structured sparsity [7]. Ullrich et al. introduce soft weight
sharing, through which is possible to introduce redundancy in
the network and reduce the amount of stored parameters [6].
The resulting tensors representing the connections between
layers are however randomly sparse, i.e. they have no struc-
ture. Representing sparse matrices in a memory efficient for-
mat is a non-trivial problem, thus high pruning ratios do not
necessarily translate into smaller memory footprints.

Structured pruning approaches aim at pruning parameters
from the network yet with a constraint on the resulting topol-
ogy. A recent work [13] proposes a differentiable proxy mea-
sure to `0 norm of parameters, or group of parameters. Min-
imizing this proxy, it is possible to shrink the total size of
the model. The problem with this approach is the significant
computational overhead introduced, making it hard to apply
to more complex architectures. In [12] a regularizer based
on group lasso is proposed, whose goal is to cluster filters in
convolutional layers, is proposed. However, such a technique
cannot be generalized to bulky fully-connected layers, where
most of the complexity (in terms of number of parameters)
lies. In the next section we are going to introduce the two
state-of-the-art approaches we use within the neural network
compression pipeline to obtain unstructured [11] and struc-

tured [14] sparsity.

3. PROPOSED COMPRESSION PIPELINE

In this section we describe a neural network compression
pipeline as specified in [2] and as illustrated in Fig. 1 (also
including a non normative evaluation part).

3.1. Parameter Pruning

During pruning, some parameters of the network are removed
from the connections graph. We will consider two different
pruning strategies.

As an unstructured pruning strategy, we use LOBSTER [11].
LOBSTER on the field proves it is a state-of-the-art prun-
ing strategy, achieving higher pruning ratios than other ap-
proaches like [5, 7, 8] for challenging tasks like pruning
ResNet. It is based on the evaluation at training time of the
parameters sensitivity, defined by the variation of the loss
function L with respect to the variation of each parameter wi:

Sl(L,wi) =

∣∣∣∣ ∂L∂wi

∣∣∣∣ . (1)

The term Sl can be exploited as an additional regularizer dur-
ing training so that parameters having little impact on the loss
are pushed towards zero and then pruned to get a sparse net-
work.

As state-of-the-art structured pruning strategy we propose
using SeReNe [14]. SeReNe generalizes (1) by introducing
the concept of neural sensitivity in terms of the variation of
the network output y with respect to the variation of the ac-
tivity pn of the n-th neuron:

Sr(y,Wn) =

∥∥∥∥ ∂y

∂pn(Wn)

∥∥∥∥
1

. (2)

The activity of each neuron, a.k.a. post-synaptic potential, in
turns depends on all the neuron’s parameters, e.g. a set of
weights Wn = {wn,i}Pn

i=1, being Pn the number of param-
eters of the n-th neuron. Using a strategy similar to LOB-
STER, Sr can be plugged into the regularization term to train
a network where the all the parametersWn are jointly shrunk.
As a result, after pruning the network is not only sparse, but
with fewer neurons, e.g. fewer filters for convolutional layers.



Table 1: Experimental results for different network architectures and pruning strategies. Left: percentage of pruned parameters,
size of the simplified network topology and size of the compressed bitstream. Right: inference time on different embedded
devices: Raspberry Pi 3B (RPi 3B), Huawei P20 (P20), Xiaomi MI 9 (MI9) and Samsung Galaxy S6 lite (S6L).

Dataset Architecture Pruning
Pruning Simplified Compressed Inference time [ms]
ratio [%] topology [MB] bitstream [MB] RPi 3B P20 MI9 S6L

CIFAR-10

VGG-16
No pruning - 60.0 3.6 647 204 153 251

LOBSTER [11] 92.44 58.61 1.61 610 191 146 242
SeReNe [14] 47.16 31.02 0.34 594 99 85 106
No pruning - 2.0 0.30 580 32 30 31

ResNet-32 LOBSTER [11] 81.19 1.96 0.12 545 32 26 30
SeReNe [14] 52.80 1.0 0.09 536 25 17 25

CIFAR-100 AlexNet
No pruning - 94.6 10.1 246 131 84 168

LOBSTER [11] 98.90 48.84 0.40 224 95 67 120
SeReNe [14] 59.87 37.07 0.20 186 75 53 96

ImageNet ResNet-101
No pruning - 178.4 26.24 11919 958 416 1008

LOBSTER [11] 87.39 173.87 9.24 11879 956 403 985
SeReNe [14] 1.09 172.53 7.51 11699 929 371 974

3.2. Topology Simplification

After pruning, the network undergoes simplification: in this
stage, arcs corresponding to neurons without incoming and/or
outgoing connections are removed from the topology. Simpli-
fication is mostly effective when the network has been pruned
with SeReNe: parameters Wn can be simply removed, e.g.
deleting a whole column in a tensor. See also the discussion
about Fig. 2 in Sec. 4.

3.3. Quantization and Coding

Finally, the remaining parameters undergo quantization and
entropy coding, yielding a compressed bitstream. We rely on
scalar quantization of parameters and DeepCABAC [3, 4] for
entropy coding, in accordance to the MPEG-7 part 17 stan-
dard. DeepCABAC represents an evolution of the context
adaptive binary arithmetic coding used in video that includes
model quantization, binarization and arithmetic coding.1

4. EXPERIMENTAL RESULTS

Tab. 1 shows the results of our experiments with the pop-
ular VGG-16, ResNet and AlexNet architectures for image
classification over the CIFAR-10, CIFAR-100 and ImageNet
datasets. All the architectures are compressed according to
the scheme described in the previous section, i.e. we alterna-
tively prune the networks with LOBSTER [11](unstructured)
and SeReNe [14] (structured). The size of the simplified net-
works refers to the case where the parameters are represented
over 32-bit floating-point values, compliant to the IEEE 754
standard. All results are obtained with fixed quantization step

1https://github.com/fraunhoferhhi/DeepCABAC

equal to 2−15. As expected, LOBSTER yields the highest
compression ratio, i.e. removes more parameters from the
network, whereas SeReNe yields more compact simplified
topologies. Of course, the more general the task, the least
the parameters/neurons to be removed without performance
loss (for example, on ImageNet the parameters removed in
proportion are less than for other architectures).

Fig. 2 shows the parameter pruning map for the first
convolutional layer of VGG-16 trained over CIFAR-10 (64
convolutional neurons, 3 filters sized 3 × 3 per neuron) for
both LOBSTER (Fig. 2a) and SeReNe (Fig. 2b). Here, black
lines represent neurons for which all parameters were pruned
by SeReNe, and thus are not represented altogether in the
simplified topology, yielding reduced size simplified net-
works. As a result, structured pruning always yields the best
end-to-end compression efficiency in terms of size of com-
pressed bitstream size. In particular, for VGG-16 trained on
CIFAR-10, the SeReNE-pruned network bitstream is about 5
times smaller than the LOBSTER reference.

Clearly, to guarantee optimal encoding into the final
bitstream, one needs not only to reduce the number of pa-
rameters in the network, but also that their entropy is low.
Our experiments highlight that SeReNe is very effective also
in terms of parameters entropy or compressibility. To spot
this effect let us observe the compression ratio Cp achieved
by DeepCABAC after simplification, measured as the ratio
between the final compressed bitstream size and the sim-
plified floating-point network: in the VGG-16 case we get
Cp = 0.0275 for unstructured and Cp = 0.011 for structured
pruning: the parameters retained with SeReNe can be com-
pressed about 3 times more.

To summarize, unstructured pruning is effective in setting
the largest possible amount of parameters to zeros, but the

https://github.com/fraunhoferhhi/DeepCABAC
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Fig. 2: Representation of the first convolutional layer for
VGG-16 trained on CIFAR-10: unstructured pruning LOB-
STER (a) and structured pruning SeReNe (b). Black pixels
are pruned parameters.

corresponding network tensors are sparse, and the remain-
ing parameters are costly to represent. On the other hand,
structured pruning provides a counter-intuitive behavior since
one gets more non-zeros parameters, but their structure can
be exploited for better compression. Not only the tensor can
be trivially simplified (e.g. by completely dropping some di-
mensions), but the entropy of the symbols to be encoded with
DeepCABAC turns to be lower. This result is likely due to
the favourable interplay between the neural sensitivity regu-
larizer (2) and the context modeling in DeepCABAC: indeed,
(2) amounts at imposing a constraint onto a set of weightsWn

in the context of a given neuron; the same regularity can be
exploited by DeepCABAC to jointly represent the same con-
text. On the contrary, unstructured regularization (1) behaves
independently on every weight, with lower chances to create
homogeneous contexts for the following entropy coder.

Finally, Fig. 3 shows the compression-accuracy trade-
off for VGG-16 over CIFAR-10 dataset for different Deep-
CABAC quantization steps q ∈

[
2−15; 1

]
range. SeReNe’s

structured pruning yields comparable accuracy at far lower
encoded bitstream rate, outperforming by a large margin
LOBSTER.

4.1. Inference Time

Tab. 1 also shows the inference time (averaged on 1k trials)
when the decompressed simplified architecture is deployed on
embedded devices.The experiments have been worked on the
following devices:

• RaspBerry Pi 3B (RPi 3B): Quad Core 1.2GHz Broad-
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Fig. 3: Classification accuracy vs. compression rate for VGG-
16 on CIFAR-10 for different pruning strategies. The com-
pression rate is the ratio between the model’s size after Deep-
CABAC and the original size. Lower compression rate means
better compression efficiency.

com BCM2837 64bit CPU, 1GB RAM;

• Huawei P20 phone (P20): 4x2.36 GHz Cortex-A73 +
4x1.84 GHz Cortex-A53 processors, 4GB RAM;

• Xiaomi MI 9 phone (MI9): 1x2.84 GHz Kyro 485 +
3x2.42 GHz Kyro 485 + 4x1.80 GHz Kyro 485, 6GB
RAM;

• Samsung Galaxy S6 lite tablet (S6L): 4x2.3 GHz
Cortex-A73 + 4x1.7 GHz Cortex-A53, 4GB RAM.

Structured sparsity always yield lower inference time as a side
benefit of the more compact representation of the network
into the device memory and the fewer matrix-vector multi-
plication required at inference time.

5. CONCLUSIONS

In this work we evaluated the role of unstructured and struc-
tured parameter pruning approaches in a standardized neural
network compression pipeline. The surprising result of our
experiments is that structured pruning enables better end-to-
end compression despite lower pruning ratios. We explain this
finding in part with the structure of the pruned network that
is easier to simplify dropping entire parts of the tensors and
in part with the lower entropy of the residual symbols pro-
cessed by the DeepCABAC encoder. Future works include
the design of a entropy-aware regularization strategy in order
to minimize at training/pruning time the model’s size after
compression.
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