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ABSTRACT

We investigate latent-space scalability for multi-task collabo-
rative intelligence, where one of the tasks is object detection
and the other is input reconstruction. In our proposed ap-
proach, part of the latent space can be selectively decoded to
support object detection while the remainder can be decoded
when input reconstruction is needed. Such an approach al-
lows reduced computational resources when only object de-
tection is required, and this can be achieved without recon-
structing input pixels. By varying the scaling factors of var-
ious terms in the training loss function, the system can be
trained to achieve various trade-offs between object detection
accuracy and input reconstruction quality. Experiments are
conducted to demonstrate the adjustable system performance
on the two tasks compared to the relevant benchmarks.

Index Terms— Deep feature compression, collaborative
intelligence, multi-task models, latent-space scalability, video
coding for machines.

1. INTRODUCTION

Rapid deployment of artificial intelligence (AI)-enabled ap-
plications is putting a strain on computational resources
across a number of systems, from handheld devices to large-
scale cloud computing systems. Recent studies [1, 2] have
established the concept of collaborative intelligence (CI) as
one way to address such challenges, by splitting an AI model
(e.g., a deep neural network, DNN) between the edge and the
cloud. In such a framework, intermediate features, produced
by the model’s front-end, are sent from the edge to the cloud.
Hence, compression of intermediate features has become a
topic of interest. Related standardization activities include
Video Coding for Machines (VCM) [3] and JPEG-AI [4].

For example, [5–9] have demonstrated that coding inter-
mediate features can lead to significant compression gains,
with a minimal loss in task accuracy. These studies were
based on off-the-shelf single-task DNN models. In our earlier
work [10], a multi-task CI model was developed that supports
object detection and input reconstruction, using near-lossless
coding of intermediate features. Related approaches [11, 12],
utilizing lossy feature compression, were presented for differ-
ent multi-task models. Unlike these methods, where a single
feature tensor is coded to support multiple back-end tasks, re-

cent proposals [13, 14] focus on scalable coding to support
multiple tasks. For example, [14] presented a scalable coding
approach that supports facial landmark detection and genera-
tive input face reconstruction. While the generative decoder
works well for face reconstruction, it might be less successful
in reconstructing non-face details of the input image.

In this paper, we present a CI system that uses latent-
space scalability to support object detection and input image
reconstruction. Specifically, a part of the latent space (base
layer) is dedicated to object detection (base task) while the
entire latent space is utilized for input reconstruction. The
portion of the latent space that is not used for the base task
can be interpreted as an enhancement layer. Such represen-
tation can also be used for other multi-task models (i.e., the
base task could be something other than object detection) and
allows for efficient, scalable learnt representation of the input.

Section 2 briefly reviews related approaches to intermedi-
ate feature compression. The proposed method is described
in Section 3. Experimental results are presented in Section 4,
followed by conclusions in Section 5.

2. RELATED WORK

Early approaches to feature compression [5–9] focused on
coding a single feature tensor from a single-task DNN, with
tasks being image classification [6, 7] or object detection [5].
A popular approach for coding feature tensors in these works
was to tile the tensor into an image, apply pre-quantization
(say, to 8 bits per tensor element), and then use a conventional
image codec for compression. In order to further improve the
tensor coding efficiency, [8, 9] proposed additional methods
such as tensor channel prediction and data clipping.

Since multiple tasks are often required in image/video
analysis [13, 15], another group of methods has focused on
feature compression for multi-task DNNs [10–12]. Although
these works validated the idea that multi-task analytics are
possible from a single compressed feature tensor, no further
study was made as to how to efficiently organize the latent
space for multiple tasks. In particular, in these approaches,
reconstruction of the whole tensor is needed to accomplish
any task. Most recently, [14] proposed a scalable feature rep-
resentation for coding face images. Specifically, edge maps
needed for facial landmark detection form the base layer,
while additional color information forms the enhancement
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Fig. 1. Markov chain model for our CI system.

layer. Facial landmark detection can be accomplished from
the base-layer information only, while facial image can be
reconstructed using both base and enhancement layer, by a
generative decoder. While the main idea in [14] is very ap-
pealing, it is not clear how this approach can be extended to
more general (e.g., non-face) image coding scenarios.

The approach presented in this paper builds on the idea of
scalable latent-space representation, and is more widely-
applicable than [14]. In particular, it can accommodate
generic learnt features and an arbitrary base task. For con-
creteness, our experiments are carried out on a model whose
base task is object detection, but it should be noted that a
similar methodology could be applied to another base task,
such as image classification, object segmentation, etc.

3. PROPOSED METHOD

3.1. Motivation

A Markov chain model for the CI system studied in this paper
is shown in Fig. 1. Input image X is processed by the edge
sub-model f1, producing features Y . At the cloud side, from
the features Y , sub-model f2 reconstructs an approximation
X̂ to the input image X, while sub-model f3 performs object
detection, producing a collection T of bounding boxes and
object classes.

Processing chain X → Y → X̂ acts as an end-to-end
image codec. Note that object detection can also be per-
formed on the decoded image X̂, using an off-the-shelf ob-
ject detector such as YOLO [16] or SSD [17], which is in-
dicated by f4 in Fig. 1. In fact, such object detection from
decoded images (rather than raw images) is common prac-
tice, because object detection datasets such as COCO [18]
and ImageNet [19] contain JPEG-compressed images rather
than raw images. Applying data processing inequality [20] to
the Markov chain Y → X̂→ T , we have

I(Y ; X̂) ≥ I(Y ;T ), (1)

where I(· ; ·) denotes mutual information [20]. This suggests
that intermediate features Y carry less information about ob-
ject detection (T ) than they do about input reconstruction (X̂).
This observation motivates our approach - we construct the
features Y such that only part of Y is used for object detec-
tion, while the whole of Y is used for input reconstruction.

Fig. 2 shows the architecture of our CI system. A number
of modules in the system are based on [21], while the newly
proposed modules are discussed in more detail below.

Edge Cloud

Fig. 2. Architecture of our CI system. ‘Q’ represents quan-
tization, ‘AE’/‘AD’ represent arithmetic encoder/decoder.
Configuration details of ‘Context Model’, ‘Entropy Param-
eters’ and ‘Hyper Analysis/Synthesis’ follow [21], whereas
‘Analysis Encoder’, ‘Synthesis Decoder’ and ‘Latent Space
Transform’ are newly proposed for our use case.

(a) (b)

Fig. 3. Architecture of (a) Analysis Encoder and (b) Synthesis
Decoder for YUV420 input/output

3.2. Analysis Encoder and Synthesis Decoder

While most end-to-end learnt image compression meth-
ods [21–23] are made for RGB input images, we designed our
system for YUV420 input format, which is more common in
video coding. Specifically, input image X comprises a lumi-
nance channel XL ∈ R1×H×W and chrominance channels
XC ∈ R2×H/2×W/2, where H ×W is the input resolution.
The architectures of the corresponding Analysis Encoder and
Synthesis decoder are shown in Fig. 3. The Analysis En-
coder comprises a number of convolutional (‘CONV’) layers
(with 5 × 5 filters) and generalized divisive normalization
(GDN) [24] layers. Downsampling in the luminance branch
is performed by a convolution with stride 2. Synthesis De-
coder is a mirror of the Analysis Encoder, with convolutions
replaced by transpose convolutions (indicated by ↑) and GDN
layers replaced by inverse GDN (IGDN) layers. At the output
of the Synthesis Decoder, the reconstructed input X̂ consists
of X̂L and X̂C.

3.3. Latent-space scalability

The latent-space feature tensor in our system is of dimen-
sions Y ∈ RN×H/16×W/16, consisting of N = 192 chan-
nels: Y = {Y1,Y2, ...,YN}. We split this tensor into
two parts, Ybase = {Y1,Y2, ...,Yj}, representing the



Fig. 4. Latent space transform to enable object detection from
a subset of Ŷ

base-layer features with j < N channels, and Yenh =
{Yj+1,Yj+2, ...,YN}, representing the enhancement-layer
features with N − j channels. In our experiments, we used
j = 128. At the decoder, if only object detection is re-
quired, only Ybase needs to be reconstructed. If input image
reconstruction is required, then the entire Y is reconstructed.

An obvious question is - how do we know that the ob-
ject detection-related information is concentrated in the first j
channels of Y? This is achieved by training the entire model
in Fig. 2 from scratch, as explained in Section 3.5. Through
gradient-based updates from various loss terms, the model
learns to steer the object detection-relevant information into
Ybase, while at the same time learning to reconstruct the input
image using the entire Y .

3.4. Latent space transform

We use the pre-trained back-end of YOLOv3 [16] for ob-
ject detection in our system, specifically the portion from the
batch normalization input in layer l = 12 up to the model out-
put. At this point, YOLOv3 expects a feature tensor F (l) ∈
R256×H/8×W/8, whereas our reconstructed base features are
Ŷbase ∈ R128×H/16×W/16. Hence, a transformation from one
latent space to another is needed. The structure of the la-
tent space transform module is shown in Fig. 4; it consists
of a transpose convolutional layer, whose purpose is to match
the spatial resolution of the target latent space, and and a se-
quence of IGDN and convolutional layers. At the output, a
feature tensor in the target latent space, F̃ (l), is produced.
Once F̃ (l) is computed, it is fed to the batch normalization
B(l) of layer l = 12 of YOLOv3, followed by LeakyReLU
activation σ(·), thus producing the input to layer l = 13.

3.5. Training

Our loss function is in the form of a rate-distortion Lagrangian

L = R+ λ ·D, (2)

where R is the rate estimate, D is the combined distortion
for both input reconstruction and object detection, and λ is
the Lagrange multiplier. Since our coding engine is based

on [21], the bitstream consists of the main bitstream, encoding
latent data, and the side bitstream encoding the hyper-priors.
Based on [21], rate estimates for these two bitstreams are

R = Ex∼px
[−log2pŷ(ŷ)]︸ ︷︷ ︸

main bitstream

+Ex∼px
[−log2pẑ(ẑ)]︸ ︷︷ ︸

side bitstream

, (3)

where x denotes input data, ŷ denotes latent data, and ẑ de-
notes hyper-priors. Distortion D is computed as

D =MSE(X, X̂)

+ α ·MSE
(
σ(B(l)(F (l))), σ(B(l)(F̃ (l)))

)
+ β · (1−MS-SSIM(X, X̂)),

(4)

where α and β are scale factors used to achieve various trade-
offs, MSE is the mean squared error, and MS-SSIM is the
multi-scale structural similarity index metric [25].

The first term in (4) encourages accurate reconstruction of
the input image, while the third term encourages its percep-
tual quality. The second term is the MSE between the ground-
truth feature tensor at the output of layer l = 12 of YOLOv3
and the corresponding feature tensor derived from our base
features Ybase. Since this term depends only on Ybase and not
Yenh, gradients derived from it will update the model in such a
way that the object detection-related information is steered to-
wards Ybase. Meanwhile, both Ybase and Yenh contribute to in-
put reconstruction, so the gradients derived from the first and
third term in (4) will distribute input reconstruction-related in-
formation across both Ybase and Yenh. Training of the system
in Fig. 2 is carried out from scratch using a set of images X
and the corresponding ground-truth feature tensors obtained
at the output of layer l = 12 of YOLOv3 for those images.

4. EXPERIMENTS

Our model was trained on CLIC [26] and JPEG-AI [27]
datasets. Images from the JPEG-AI dataset were resized to
1920×1080 using the Lanczos filter. From the CLIC dataset,
only images having resolutions 320×320 or larger were used.
Images were cropped using a random window with size of
256 × 256 during training. Ground-truth feature tensors at
layer 12 of YOLOv3 were generated for all training images,
to enable computing the second term in (4). During train-
ing, these tensors were cropped to 256 × 32 × 32, to match
the position of the random 256 × 256 window in the input
image. Adam optimizer with a learning rate of 10−4 was
used to train the network for 2M epochs on a GeForce RTX
2080 GPU with 11 GB RAM. Similarly to [21], one model is
trained for each λ ∈ {0.005, 0.01, 0.02, 0.05, 0.1, 0.2} in (2).

Since our model supports two tasks, we compare it against
relevant benchmarks for each task. For object detection, the
model is evaluated on the COCO 2014 validation dataset,
which includes about 5K JPEG-compressed images. The av-
erage file size of these JPEG images is around 1260 Kbits, and



Fig. 5. Object detection performance of various methods.

off-the-shelf YOLOv3 achieves the mean Average Precision
(mAP) of 55.85% on these images. This is shown as the red
square in Fig. 5. When HEVC-Intra is used to encode tiled,
8-bit pre-quantized tensors from layer 12 of YOLOv3, the
brown curve in Fig. 5 is obtained. Our recent work [8], which
we believe is state-of-the-art for coding YOLOv3 feature
tensors, is shown as the yellow curve. To evaluate the pro-
posed model, input images were first converted to YUV420
using ffmpeg, then fed to the model. Performance curves
for several values of α and β in (4) are shown as red, green,
and blue in Fig. 5. Note that increasing α improves object
detection performance, as expected from (4). With α = 20,
outstanding performance on object detection can be achieved
at very low bitrates, with less than 1% mAP loss compared to
default YOLOv3. Even with lower α, the proposed model is
competitive with [8] at low bitrates. The shaded area in Fig. 5
shows the operating range that can be achieved by varying α.

When input reconstruction is used, our model acts as
an end-to-end image codec, so we compare it against rel-
evant benchmarks on raw YUV420 HEVC common test
sequences [28]. One benchmark is HEVC (HM-16.20) [29]
with All Intra configuration [28]. Since the backbone of
our model is based on [21], we use the model from [21] as
the second benchmark. To encode YUV420 input using [21],
chrominance channels were upsampled using nearest-neighbor
interpolation and then converted to RGB using ffmpeg.
RGB output was converted back to YUV420 using ffmpeg.

Table 1 shows the average BD-Bitrate against HEVC,
computed over Y-PSNR vs. bits curves. Our model with
(α, β) = (12, 10) shows better performance than [21] on
sequences in classes A, B, and C, and even better than HEVC
in class A. This can be expected from (4), since smaller α
together with larger β de-emphasizes object detection perfor-
mance and in turn promotes input reconstruction. Meanwhile,
setting (α, β) = (20, 0) leads to a considerable loss in input
reconstruction efficacy, but in turn achieves outstanding ob-
ject detection performance, as seen in Fig. 5.

Table 2 shows the average BD-Bitrate against HEVC,
computed over Y-MS-SSIM vs. bits curves. It is well known
that end-to-end deep model-based image codecs perform well

Table 1. BD-Bitrate (Bits vs. Y-PSNR) vs. HM-16.20

Class
Baseline

[21]
Proposed method

(α = 9, β = 0) (α = 12, β = 10) (α = 20, β = 0)

A 8.54% -2.60% -6.93% 150.48%
B 43.91% 9.08% 3.16% 206.82%
C 17.98% 22.17% 14.57% 198.05%
D 17.14% 28.99% 22.25% 188.54%

Table 2. BD-Bitrate (Bits vs. Y-MS-SSIM) vs. HM-16.20

Class
Baseline

[21]
Proposed method

(α = 9, β = 0) (α = 12, β = 10) (α = 20, β = 0)

A -27.47% -17.11% -23.72% 45.64%
B -10.61% -9.09% -16.25% 79.31%
C -39.00% -3.88% -10.80% 80.55%
D -27.84% 0.98% -5.32% 77.14%

on MS-SSIM, and this is indeed noticeable in Table 2. Here,
the model from [21] outperforms HEVC in all sequence
classes, and our model with (α, β) = (12, 10) does so as
well. Our model does better than [21] in class B, while in
other classes, [21] offers better performance. It can also be
noted that loss of input reconstruction efficacy of our model
with (α, β) = (20, 0) is now much smaller when measured
against MS-SSIM.

Overall, the above results show that the proposed model
can achieve comparable compression efficiency to [21] when
used as and end-to-end image codec, and can be better than
HEVC when the reconstruction quality is measured using
MS-SSIM. On top of that, our model offers scalability to per-
form object detection from a subset of the latent space, which
neither [21] nor HEVC (nor any other codec, to our knowl-
edge) is currently able to offer. We therefore believe it will be
a useful contribution to future research and standardization
activities in this area.

5. CONCLUSIONS

We introduced latent-space scalability for multi-task collab-
orative intelligence, and tested it on a system that supports
object detection and input reconstruction. A part of the la-
tent space is dedicated to object detection, while the whole
latent space is used for input reconstruction. Appropriately
chosen loss terms allow for steering relevant information to
different portions of the latent space as the model is trained.
By varying the scaling factors of various loss terms, differ-
ent trade-offs between the two tasks were demonstrated and
compared with the relevant benchmarks.
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[23] J. Ballé, V. Laparra, and E. Simoncelli, “End-to-end opti-
mized image compression,” in 5th International Conference
on Learning Representations, ICLR 2017, 2019.
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