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ABSTRACT

Gait recognition is a promising video-based biometric for

identifying individual walking patterns from a long distance.

At present, most gait recognition methods use silhouette im-

ages to represent a person in each frame. However, silhouette

images can lose fine-grained spatial information, and most

papers do not regard how to obtain these silhouettes in com-

plex scenes. Furthermore, silhouette images contain not only

gait features but also other visual clues that can be recog-

nized. Hence these approaches can not be considered as strict

gait recognition.

We leverage recent advances in human pose estimation to

estimate robust skeleton poses directly from RGB images to

bring back model-based gait recognition with a cleaner repre-

sentation of gait. Thus, we propose GaitGraph that combines

skeleton poses with Graph Convolutional Network (GCN) to

obtain a modern model-based approach for gait recognition.

The main advantages are a cleaner, more elegant extraction of

the gait features and the ability to incorporate powerful spatio-

temporal modeling using GCN. Experiments on the popular

CASIA-B gait dataset show that our method archives state-

of-the-art performance in model-based gait recognition.

The code and models are publicly available1.

Index Terms— Gait Recognition, Graph Neural Net-

works

1. INTRODUCTION

Compared to other unique biometrics like face, fingerprint,

and iris, gait is remarkable in the recognition from a great dis-

tance and without the cooperation or intrusion to the subject.

Hence, it opens up enormous potential for applications such

as social security, access control, and forensic identification.

However, gait can be sensitive to surface type, clothing,

carried items, and clutter or occlusions in the scene. These

represent the challenges of tackling the gait identification task

to learn unique and invariant features from the human gait.
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Fig. 1: Comparison of different gait representations of a sub-

ject in the CASIA-B gait dataset at different timesteps. Each

row depicts the same frames as RGB image, silhouette image,

and 2D skeleton pose, respectively, from top-to-bottom.

Most current approaches [1–3] use silhouettes extracted

from a video sequence to represent the gait. These approaches

apply the following steps: silhouette extraction, feature learn-

ing, and similarity comparison. The silhouette extraction is

mostly done using background subtraction [4]. While back-

ground subtraction is easy to apply in a lab setting, it becomes

cumbersome in a cluttered and rapidly-changing real-world

scenario. Most applications [2, 3, 5] do not consider the com-

plexity of the background subtraction task. Other approaches

go up to the extent of training a separate Convolutional Neural

Network (CNN) for this task [1].

With robust human pose estimators emerging, other ap-

proaches [6, 7] started new model-based methods for gait.

Current pose estimation algorithms are very robust against

occlusion, cluttered and changing backgrounds, carried items,

and clothing. Compared to silhouette images, multiple poses

can be extracted from an image simultaneously, even if they

overlap [8]. Pose estimation in 2D and 3D is an active area of

research, and our approach will profit from further improve-

ments. Furthermore, a skeleton sequence is a cleaner rep-
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resentation of the gait since silhouette images also capture

visual information of the person like physique or hairstyle.

Hence, silhouette-based approaches recognize gait features

and other appearance clues, which make these approaches

more comparable to person re-identification methods.

This paper proposes GaitGraph, a novel approach where

we apply a GCN on a graph of human skeleton poses. In-

spired by the success of GCNs in skeleton-based action recog-

nition [9, 10], we adapted the methods to the gait recognition

task. The pose estimation replaces the silhouette extraction

from previous approaches. The skeleton-based representation

brings back real gait recognition while also using less sensi-

tive personal data.

Our contributions can be summarized as follows:

(1) We use a modern interpretation of model-based gait

recognition, exploiting robust human pose estimation and

powerful temporal and spatial modeling of GCNs.

(2) Our empirical experiments show state-of-the-art

(SOTA) results compared to the current model-based ap-

proaches and even competitive results compared to appearance-

based methods.

2. RELATED WORK

Current works in gait recognition can be grouped by their spa-

tial feature extraction and their temporal modeling.

For the spatial feature extraction, there are two categories:

appearance-based and model-based approaches. Appearance-

based methods relied on a binary human silhouette image ex-

tracted from the original image [4]. The extraction is usually

obtained by background subtraction for static scenes but be-

comes more complicated for dynamic and changing settings

[1]. While most approaches [1,2,5] use the whole shape as in-

put, recent methods [3] focus on specific body parts. Model-

based approaches consider the underlying physical structure

of the body [6, 7, 11]. The features extracted from the model

data are mostly handcrafted and contain velocity, angles, etc.

While model-based approaches used to be computationally

expensive, the advances in pose estimation have now made

them an interesting possibility.

The temporal modeling can be divided into single-image,

sequence-based, and set-based approaches. Early approaches

proposed to encode a gait cycle into a single image, i.e.,

Gait Energy Image (GEI) [12]. These representations are

easy to compute but lose most of the temporal information.

Sequence-based approaches focus on each input separately.

For modeling the temporal information 3D-CNNs [6, 13] or

LSTMs [7, 14] are used. These approaches can comprehend

more spatial information and gather more temporal informa-

tion but require higher computational costs. The set-based

approach [2] with shuffled inputs models no temporal infor-

mation, thus has less computational complexity. GaitPart [3]

introduces a novel temporal module, that focuses on capturing

short-range temporal features.

In recent years, some approaches [7, 15] extract skeleton

features with a pose estimator for gait recognition. These ap-

proaches use traditional CNNs combined with LSTMs [15] or

handcrafted temporal features [7].

3. SKELETON-BASED GAIT RECOGNITION

In this section, we describe our method for learning discrim-

inative information from a sequence of human poses. The

overall pipeline is illustrated in Fig. 2.

3.1. Preliminaries

Notation. A human skeleton graph is denoted as G = (V , E),
where V = {v1, . . . , vN} is the set of N nodes representing

joints, and E is the set of edges representing bones captured

by an adjacency matrix A ∈ R
N×N with Ai,j = 1 if an

edge connects from vi to vj and Ai,j = 0 otherwise. A is

symmetric since G is undirected.

Gait as a sequence of graphs has a node feature set X =
{xt,n ∈ R

C | t, n ∈ Z, 1 ≤ t ≤ T, 1 ≤ n ≤ N} represented

as a feature tensor X ∈ R
T×N×C , where xt,n = Xt,n,: is the

C dimensional feature vector for node vn at time t over a total

of T frames.

Thus, the input gait can be described by A structurally

and by X feature-wise, with Xt ∈ R
N×C being a pose at

time t. The pose feature X in the C dimension is a tuple of

2D coordinate, and it’s confidence. The N dimension is the

number of joints. A learnable weight matrix at layer l of a

network is denoted as Θ(l) ∈ R
Cl×Cl+1 .

Graph Convolutions. On skeleton inputs, defined by

features X and graph structure A, the layer-wise update rule

of graph convolutions can be applied to features at time t as:

X
(l+1)
t = σ

(

D̃
−

1
2 ÃD̃

−
1
2X

(l)
t Θ(l)

)

, (1)

where Ã = A+ I is the skeleton graph with added self-

loops to keep identity features, D̃ is the diagonal degree

matrix of Ã, and σ(·) is an activation function. The term

D̃
−

1
2 ÃD̃

−
1
2X

(l)
t can be intuitively interpreted as an approx-

imate spatial mean feature aggregation from the messages

passed by the direct neighbors.

3.2. Human Pose Extraction

For the feature extraction from the raw input images we es-

timate the human pose in each frame. The pose estimation

or simply a keypoint detection aims to detect the locations of

N keypoints (e.g., shoulder, hip, knee, etc.) from an image

I ∈ R
W×H×3. The SOTA method [8] solve this problem by

estimating N heatmaps {H1,H2, . . . ,HN} of size W ′×H ′,

where the heatmap Hn indicates the location of the n-th key-

point. The location of the maximum of these heatmaps Hn

yields the location of the keypoint vn that define the edges V .



Fig. 2: Overview of the Pipeline. Starting with a sequence of images, for each image a pose is estimated. The sequence of

poses is then feed through the ResGCN yielding the feature embedding.

In our approach we use HRNet [16]2 as a 2D human pose

estimator. We use the provided network, which is pre-trained

on the COCO dataset [17]. The COCO dataset pose anno-

tations consist of 17 keypoints. There is no provided set of

bones or edges E but we use a commonly used configuration

as shown in the last row of Fig. 1.

3.3. Network and Implementation Details

The network’s main architecture follows the design proposed

as the ResGCN in [10] with adaptions to our use case. The

network is composed of ResGCN blocks. The block consists

of a Graph Convolution followed by a classic 2D Convolution

in the temporal domain and a residual connection with an op-

tional bottleneck structure. The network is then composed of

multiple ResGCN blocks in sequence (see Tab. 1 for detailed

configuration), followed by an average pooling and a fully

connected layer that is yielding the feature vector. As the loss

function, we use supervised contrastive (SupCon) loss [18].

Augmentation. For augmentation on the skeleton graph,

we use multiple unique augmentation techniques. First, we

flip the order of the sequence, which can be interpreted as the

person walking backward. Secondly, we mirror the skeleton

graph along a vertical axis through the graph’s center of grav-

ity. This augmentation causes the person to walk in the op-

posite direction. Furthermore, we add small Gaussian noise

to each joint and the same joint in the sequence to make our

network more robust to the pose estimation’s inaccuracies.

Testing. At testing, the distance between gallery and probe is

defined as the Euclidean distance of the corresponding feature

vectors. Besides, we feed the original and a flipped order

sequence to the network and take the average of two feature

vectors.

4. EXPERIMENTS

In this part, we compare GaitGraph to other SOTA meth-

ods in public gait dataset CASIA-B [19]. We compare the

2github.com/HRNet/HRNet-Human-Pose-Estimation

Table 1: Overview of the ResGCN-N39-R8 network architec-

ture for a pose with 17 joints and sequence length of 60.

Block Module Output Dimensions

Block 0 BatchNorm 60× 17× 3

Block 1

Basic 60× 17× 64

Bottleneck 60× 17× 64

Bottleneck 60× 17× 32

Block 2

Bottleneck 30× 17× 128

Bottleneck 30× 17× 128

Bottleneck 15× 17× 256

Bottleneck 15× 17× 256

Block 3
AvgPool2D 1× 256

FCN 1× 128

performance on multiple views and multiple walking condi-

tions with model-based and appearance-based methods and

conduct ablation studies to evaluate our temporal and spatial

modeling.

4.1. Dataset and Training Details

Most available gait datasets do not provide RGB images since

they are tailored to gait methods that rely on silhouettes or

GEIs. Therefore we cannot evaluate on the largest public gait

dataset OU-MVLP [20], the evaluation on the commonly used

dataset CASIA-B provides a comparison with other methods.

CASIA-B [19] is a widely used gait dataset and composed

of 124 subjects. For each of the 124 subjects the dataset con-

tains 11 views (0°, 18°, . . . , 180°) and 3 waking conditions.

The walking conditions are normal (NM) (6 sequences per

subject), walking with a bag (BG) (2 sequences per subject),

and wearing a coat or a jacket (CL) (2 sequences per subject).

Summed up, each subject contains 11 × (6 + 2 + 2) = 110
sequences.

Since there is no official partition of training and test

set, there are various experiment protocols [21]. For a fair

comparison, this paper follows the popular protocol by [5].

Furthermore, we use the commonly called large-sample train-

ing (LT) partition. In LT, the first 74 subjects comprise the

https://github.com/HRNet/HRNet-Human-Pose-Estimation


Table 2: Averaged Rank-1 accuracies in percent on CASIA-B per probe angle excluding identical-view cases compared with

other model-based methods.

Gallery NM#1-4 0°-180°
mean

Probe 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°

NM#5-6
PoseGait [7] 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7

GaitGraph 85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7

BG#1-2
PoseGait [7] 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5

GaitGraph 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8

CL#1-2
PoseGait [7] 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0

GaitGraph 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3

Table 3: Averaged Rank-1 accuracies in percent on CASIA-

B comparison with both appearance-based and model-based

methods.

Probe

Type Method NM BG CL

appearance

-based

GaitNet [1] 91.6 85.7 58.9

GaitSet [2] 95.0 87.2 70.4

GaitPart [3] 96.2 91.5 78.7

model

-based

PoseGait [7] 68.7 44.5 36.0

GaitGraph 87.7 74.8 66.3

training set, whereas the remaining 50 subjects form the test

set. In the test sets of all three settings, the first four sequences

of the NM condition (NM #1-4) are kept in the gallery, and

the remaining six sequences are divided into three probe

subsets, i.e., NM subsets containing NM #5-6, BG subsets

containing BG #1-2 and CL subsets containing CL #1-2.

Training Details. The pose sequence is partitioned as a

graph using the spatial configuration as mentioned in [9] with

a sequence length T = 60 frames. Adam optimizer is used

with a 1-cycle learning rate [22] and a weight decay penalty

of 1e-5. For the first cycle, the maximum learning rate is set

to 0.01 for 300 epochs, and for the second cycle, the maxi-

mum learning rate is 1e-5 for 100 epochs. The loss function’s

temperature is set to 0.01, and the batch size is 128.

4.2. Comparison with State-of-the-Art Methods

Tab 2 shows the comparison of GaitGraph to PoseGait [6],

which represents the sole pose-based approach to gait recog-

nition utilizing handcrafted pose features. Our approach in-

dicates significant improvements throughout all cross-views

and walking conditions. With both approaches using a sim-

ilar performing pose extractor, this proves the superiority of

our GCN architecture as a feature extractor.

The currently best performing models use appearance-

based features. In Tab 3, we compare the appearance-based

and model-based methods with our approach. The first three

methods all use explicitly [2, 3] or implicitly [2] silhouette

Table 4: Spatio-temporal Study. Control Condition: shuf-

fle/sort the input sequence at train/test phase. Results are

rank-1 accuracies on CASIA-B averaged in percent.

GaitGraph GaitPart [3]

Train Test NM BG CL NM BG CL

a Shuffle Sort 47.3 36.9 26.9 95.6 89.9 71.5

b Sort Sort 87.7 74.8 66.3 96.2 91.5 78.7

c Sort Shuffle 26.4 22.0 16.7 92.5 85.8 65.1

images as their feature representation. Notably, with our

lower dimension feature representation, we can still archive

competitive results against these appearance-based methods.

Furthermore, our approach shows a high ability to model

temporal features as shown in Tab 4. When trained with

sorted sequences and tested with shuffled sequences (row

c), the performance drops profoundly. As a comparison, the

same ablation study was conducted by GaitPart [3], with

only a slight drop in performance from row b to c. These

results further support our claim of bringing back real tem-

poral features to gait recognition. Tab 4 also illustrates the

spatial modeling abilities in row a. Despite the missing tem-

poral and appearance information, the network is still able to

learn appearance-invariant features of the person’s underlying

physic.

5. CONCLUSION

In this paper, we present a novel approach to interpret gait as

a sequence of skeleton graphs. Thus, GaitGraph is proposed,

which uses a human pose estimator to extract the 2D skeleton

pose, and extract the gait information considering the inher-

ent graph structure of the skeleton. Furthermore, experiments

conducted on the well-known database CASIA-B [19] show

SOTA results in model-based gait recognition and competi-

tive results against appearance-based methods in gait recogni-

tion. Our spatial-temporal ablations proves our claim to bring

back true temporal gait features instead of mostly relying on

the appearance.
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