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ABSTRACT

Person Re-Identification aims to retrieve person identities from im-

ages captured by multiple cameras or the same cameras in different

time instances and locations. Because of its importance in many vi-

sion applications from surveillance to human-machine interaction,

person re-identification methods need to be reliable and fast. While

more and more deep architectures are proposed for increasing per-

formance, those methods also increase overall model complexity.

This paper proposes a lightweight network that combines global,

part-based, and channel features in a unified multi-branch archi-

tecture that builds on the resource-efficient OSNet backbone. Us-

ing a well-founded combination of training techniques and design

choices, our final model achieves state-of-the-art results on CUHK03

labeled, CUHK03 detected, and Market-1501 with 85.1% mAP /

87.2% rank1, 82.4% mAP / 84.9% rank1, and 91.5% mAP / 96.3%

rank1, respectively.

Index Terms— Person Re-Identification, Deep Learning, Image

Processing

1. INTRODUCTION

Person Re-Identification (PREID) is an important computer vision

task for video surveillance applications. Formally, the problem can

be stated as follows [1]. Given a probe image P, and a gallery of

M images G = {Gi}
M
i=1, all of which annotated with an associated

identity id(Gi) ∈ N, the goal is to find a similarity measure sim (·)
such that

i
∗ = argmax

i=1,...,M

sim(P,Gi) ⇒ id(P) = id(Gi∗). (1)

While it is no surprise that the success of deep learning and the need

for PREID as a processing step for person tracking has resulted in

numerous approaches, the problem remains challenging, especially

when it comes to balancing performance and low complexity of the

models.

Recently, multiple-branch architectures have been proposed in

particular [2–6]. These methods allow the network to focus on dif-

ferent person features in individual branches, e.g., on distinct spatial

parts or channels. Although branching generally increases model

performance, it comes with higher computational costs, especially

if the number of branches or the total number of operations in them

is increased. We claim that additional model complexity is not nec-

essary and propose a network that outperforms other multi-branch
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approaches by using a suitable feature extractor and the right com-

bination of training techniques.

The resulting network consists of three branches that opti-

mize the global, partial, and channel-wise representations using

simple computations, respectively. Despite this branching, we suc-

ceed in keeping the number of parameters low using OSNet [7], a

lightweight feature extractor that has recently proven to be more effi-

cient and accurate than other backbones for PREID tasks. Our deep

neural network achieves state-of-the-art results on two important

benchmark datasets, Market-1501 [8] and CUHK03 [9]. In detailed

ablation studies, we demonstrate how the respective branches in-

crease model performance, why our network performs better than

other multi-branch approaches, and what training techniques are

necessary to train a multi-branch architecture with OSNet backbone.

Code and pretrained models of our research are publicly available1.

2. RELATED WORK

While PREID has been studied as a computer vision task for a long

time [10], deep learning accelerated the research progress and model

performance significantly, dominating the scene ever since [1, 2, 7,

11–13]. PREID approaches can be categorized as follows. First,

several methods focus on improving feature extraction for the global

input images [7, 12, 14]. Luo et al. [12] contributed with compre-

hensive research of many training techniques and were able to find

combinations that boost the overall performance. Zhou et al. [7], on

the other hand, concentrated on the feature extraction itself, propos-

ing OSNet, a multi-scale network designed explicitly for the PREID

task that outperforms standard ResNet50 [15] backbones despite a

much lower number of parameters.

Another important research direction is finding spatial partitions

of the persons’ images [3,13,16]. Usually, the input image is divided

into disjoint parts, often horizontal stripes, to obtain partitioned fea-

tures that are discriminative for person matching. Sun et al. [13]

utilized the idea of part pooling, where the partitioning is done via

spatial pooling after the convolutional layers of the backbone. This

idea has since been used in other architectures [2, 3, 16]. In this

context, many multi-branch or multi-stage approaches have been de-

veloped [2, 3, 6]. They mostly try to learn global and spatial part

features in individual branches or combine part, channel, and global

features, either through pooling [2, 3, 16] or attention [4, 5, 17, 18].

3. METHODOLOGY

3.1. Network Architecture

Like all recent works on the problem, we design an end-to-end neu-

ral network architecture based on strong image feature extraction

backbones pretrained on ImageNet [19]. In this subsection, we de-

scribe the architecture and training of the proposed network to solve

1https://github.com/jixunbo/LightMBN
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Fig. 1: Structure of our network. After forwarding images through the first three blocks of an OSNet backbone, our network continues in

three distinct branches to learn global, channel-based and part-based features. All volumes are forwarded to BNNeck layers to produce final

embeddings suited for different loss functions.

Eq. (1). Our goal is to utilize a multi-branch architecture similar to

MGN [2] and SCR [3] that leverages global, part-based and channel-

based features, while keeping the overall number of parameters and

embeddings low. Consequently and as illustrated in Fig. 1, our net-

work consists of three branches: The global branch, the part branch,

and the channel branch.

Let X ∈ R
384×128×3 be an input image. Before separating

into distinct branches, the image X is passed through a truncated

OSNet [7] backbone, up until the first layer of the third block, i.e.,

conv3 0, as in [6]. This concept has been employed before with

ResNet50 [2, 3], using the first blocks up to conv4 0. We chose OS-

Net over ResNet due to its superior performance and lower complex-

ity for PREID tasks [6, 7]. After forwarding X through the initial

layers, the network forms the three branches, which comprise the re-

maining layers of OSNet up to the fifth block. By this design, only

the layers up to conv3 0 are shared by all the branches, and for each

individual branch, we obtain a tensor of dimension 24× 8× 512.

In the global branch, we obtain two global representations as

follows: First, we aggregate the information by applying 2D average

pooling on the tensor, obtaining the 512-dimensional vector g. For

the second global representation, the initial 24 × 8 × 512-tensor is

used as an input for a drop block, inspired by [20]. The drop block re-

moves the highest activated horizontal regions from the tensor, forc-

ing the network to emphasize on less discriminative regions, which

increases the robustness of the resulting representation. Having re-

moved the regions of highest activity, we apply 2D max pooling on

the resulting tensor, obtaining another 512-dimensional vector gdrop.

In the channel branch, the initial 24×8×512-tensor is reduced

to a 512-dimensional vector and then partitioned into two vectors of

length 256 each. We use 1 × 1 convolutions to scale the represen-

tations back up, obtaining two 512-dimensional vectors c1 and c2.

Here, the parameters of the 1 × 1 convolutions are shared among

both channel parts.

Finally, in the part branch, we transform the initial 24×8×512-

tensor into three representations. We use average pooling to obtain a

volume of size 2 × 1 × 512 that we split into two 512-dimensional

part-based representations p1 and p2, representing the upper and

lower body, respectively. Additionally, we use max pooling on the

initial volume, obtaining another 512-dimensional global represen-

tation pg within the part branch.

We use a BNNeck [12] for all branch vector representations cal-

culated in this way. Each BNNeck block consists of batch normal-

ization and a fully connected to number-of-classes layer. The aim of

this block is to optimize embeddings for two different metric spaces

at the same time. Embeddings obtained before the batch normaliza-

tion layer are used for optimization with respect to a ranking loss

(e.g., triplet loss [21]), while embeddings obtained after the fully

connected layer are used for optimization with respect to an identity

loss (e.g., Cross-Entropy (CE) loss). Embeddings obtained after the

batch normalization but before the fully connected layer find a bal-

ance between the representations of the two different metric spaces

(i.e., ranking space and identitiy space) and are therefore used for

inference. From the resulting embeddings we form two sets, given

by

I := {ĝ, ĝdrop, p̂1, p̂2, p̂g, ĉ1, ĉ1} , (2)

R := {g,gdrop,pg} , (3)

for training in identity and rank spaces, respectively, where ·̂ denotes

the tensors of the BNNeck representations after the fully connected

layer.

3.2. Training and Loss Functions

For training, we use a combination of CE loss and Multi-Similarity

(MS) loss [22]. The latter was designed to take advantage of exist-

ing pair-wise methods and sampling strategies by exploiting a soft

weighting scheme that considers both self-similarity and relative

similarity. We compute MS loss LMS for global embeddings R
obtained before batch normalization, and CE loss LCE on all em-

beddings I obtained after applying softmax activation to the fully



Table 1: Comparison of our method with state-of-the-art. The table lists our results on the two most used benchmarks, Market-1501 and

CHUK03. The latter was evaluated on the labeled set (CHUK03-L) and the detection set (CHUK03-D) in multi-gallery-shot setting (cf. [28]).

Note that all results are reported without re-ranking (cf. [28]).

Market-1501 CHUK03-L CHUK03-D

Type Method Publication Backbone r1 mAP r1 mAP r1 mAP

Global feature

BagOfTricks [12] CVPRW’19 ResNet50 94.5 85.9 – – – –

OSNet [7] ICCV’19 OSNet 94.8 84.9 – – 72.3 67.8

BDB [14] ICCV’19 ResNet50 95.3 86.7 79.4 76.7 76.4 73.5

Part-based

PCB+RPP [13] ECCV’18 ResNet50 93.8 81.6 – – – –

MGN [2] ACM MM 18 ResNet50 95.7 86.9 68.0 67.4 66.8 66.0

Pyramid [16] CVPR’19 ResNet101 95.7 88.2 78.9 76.9 79.9 74.8

SCR [3] WACV’20 ResNet50 95.7 89.0 83.8 80.4 82.2 77.6

Attention-based

MHN [4] ICCV’19 ResNet50 95.1 85.0 77.2 72.4 71.7 65.4

ABD [5] ICCV’19 ResNet50 95.6 88.3 – – – –

PLR-OSNet [6] PRCV ’20 OSNet 95.6 88.9 84.6 80.5 80.4 77.2

SCSN [17] CVPR’20 ResNet50 95.7 88.5 86.8 84.0 84.7 81.0

Compact Re-ID [18] ACM ICMR ’20 other 96.2 89.7 – – – –

Ours LightMBN OSNet 96.3 91.5 87.2 85.1 84.9 82.4

LightMBN (computed via [8]) OSNet 96.3 91.2 87.2 83.8 84.9 81.0

connected layer, i.e.,

LMS (f(X), y)) :=
∑

r∈R

LMS (r, y) , (4)

LCE (f(X), y)) :=
∑

i∈I

LCE (i, y) , (5)

where f(X) is our networks output when forwarding X. For CE

loss LCE, we further use label smoothing [12,23], which is a regular-

ization technique that encourages the model not to be too confident

on the training data. It adds a uniform noise distribution in CE cal-

culation to soften the ground truth labels, which helps to improve

model generalization. Thus, the overall objective loss function is

L = λCELCE + λMSLMS, (6)

where λCE and λMS are suitable weights. Additionally, we use ran-

dom erasing augmentation (REA) [24], which randomly substitutes

a rectangle with the image’s mean value. It has demonstrated to

improve model generalization and to produce higher variance train-

ing data. Cosine annealing strategies are common in PREID net-

works [7,25]. To further boost performance, we use warm-up cosine

annealing [26,27] as our learning rate strategy rather than traditional

step learning rate schedules. The learning rate first grows linearly

from 6 · 10−5 to 6 · 10−4 in 10 epochs, then cosine decay to 6 · 10−7

is applied in the remaining epochs. The learning rate lr(t) at epoch

t with T total epochs is given by

lr(t) =

{

6 · 10−4 · t

10
, if t ≤ 10

6 · 10−4 · 1

2

(

1 + cos
(

π t−10

T−10

))

, if 10 < t ≤ T.

4. EXPERIMENTAL RESULTS

Datasets. We evaluated the model on two of the most widely

used large-scale datasets, Market-1501 [8] and CUHK03 [9]. The

Market-1501 dataset contains 32,668 images of 1,501 persons across

6 cameras, whereas the CUHK03 dataset comprises 13,164 images

of 1,360 person across 6 cameras. For CUHK03, we use the new

767-split protocol [28], obtaining results for the labeled (CUHK03-

L) and detected (CUHK03-D) configurations separately. We did not

evaluate on DukeMTMC-ReID since use of this dataset has been

prohibited by the authors.

Training Details. For training, input images are normalized to

channel-wise zero-mean and a standard variation of 1 and spatial

resolution of 384×128. Data augmentation is performed by resizing

images to 105% width and height and random cropping, as well as

random horizontal flip with a probability of 0.5. Models are trained

for 140 epochs for Market-1501 and 180 epochs for CUHK03 with a

batchsize of 48. A batch consists of 8 samples for 6 identities each.

The parameters are optimized by using using the Adam optimizer

[29] with ǫ = 1e− 8, β1 = 0.9 and β2 = 0.999. The backbones are

pre-trained on ImageNet [19] and all experiments are implemented

with PyTorch [30]. To balance the losses we chose λCE = λMS =
0.5.

Evaluation Details. Cosine distance is utilized to compute cumula-

tive matching characteristics (CMC) [31]. Query and gallery images

are re-sized to 384 × 128 pixels and normalized. For a fair com-

parison with other existing methods, the CMC rank-1 accuracy (r1)

and mean Average Precision (mAP) are reported as evaluation met-

rics. Results with the same identity and the same camera ID as the

query image are not counted. The authors of [32] state in their offi-

cial code repository2 that mAP values computed with recent PREID

frameworks are about 1%-point higher than those computed by the

original Matlab evaluation code of Market-1501 [8]. We were able

to reproduce this. For completeness and fair comparison, we also

state the mAP values for our final models as computed by the origi-

nal evaluation script. We hope to raise more awareness to this issue

by providing both results.

4.1. Comparison with State-of-the-Arts

Table 1 compares the performance of our model with that of other re-

cent methods. Our model achieves state-of-the-art results on Market-

1501, CUHK-L and CUHK-D, both in terms of rank-1 accuracy and

mAP. The large difference in performance with regard to the mAP

on all datasets is particularly noticeable. Interestingly, despite its

simplicity, our architecture achieves better performance than other

multi-branch approaches. Architecturally, our model is closely re-

2https://github.com/VisualComputingInstitute/triplet-reid



Table 2: Ablation study of branch influences. We investigate

our models performance under the specified branch configurations,

where G+C+P refers to our original model.

Market-1501 CUHK03-D

Branch rank1 mAP rank1 mAP

Global (G) 95.4 89.3 80.8 77.3

Channel (C) 95.9 88.8 74.7 71.2

Part (P) 95.9 90.2 80.3 77.9

C+P 96.1 91.2 82.7 79.8

G+C 96.0 90.9 82.0 79.7

G+P 96.1 91.2 83.4 81.3

G+C+P 96.3 91.5 84.9 82.4

lated to previous work such as MGN [2], PLR-OSNet [6], and, in

particular, SCR [3]. All of these approaches use a truncated back-

bone followed by branching. MGN relies on ResNet50 and only uses

spatial partitions, whereas our model builds upon OSNet and also

better exploits the PREID problem by additionally using channel

partitions. In this regard, SCR is the most similar architecture since

both spatial and channel partitions are used for multi-loss training.

However, for good performance, SCR requires nearly twice as many

embeddings as our model and creates part and channel partitions

in the same branch, which could theoretically impede the branches’

specialization.

4.2. Ablation Study

Influence of Branches. When introducing branches to a neural net-

work architecture, the parameter count can raise substantially. Thus,

any such introduction has to be well-justified. Table 2 depicts our

network’s performance for different branch combinations. The re-

sults suggest that single branches perform similarly when the other

two respective branches are deactivated. Among all branches, the

channel branch has the lowest performance on CUHK03-D, indicat-

ing that global features are very important for generalization on this

dataset. As can be seen by the pairwise combination of branches, the

part branch influences the performance significantly on CUHK03-D.

By using all three branches together, our model achieves state-of-

the-art results on both datasets.

Influence of Backbones. Table 3 shows some examples of the dif-

ferent performances of ResNet50 and OSNet. The raw model with

ResNet50 (i.e., the one without beneficial additions) has the weak-

est performance among all models. Only with all possible additions

it is able to achieve similar performance of a raw model with OS-

Net backbone. The best configuration that can be achieved with

ResNet50 is still inferior than our final model. Our model with

OSNet backbone only has about 9 million parameters, compared to

about 23 million with ResNet50 backbone.

Influence of Learning Rate Schedule. As can be seen in Table 3,

when substituting the cosine warmup annealing schedule with a con-

stant schedule, performance decreases. For the constant schedule,

we have reduced the initial learning rate of 6× 10−4 three times by

a factor of 10 in the 50th, 80th and 110th epoch, respectively. The

results indicate the importance of a suitable learning rate strategy for

PRID on both datasets.

Influence of Drop Block. The results in Table 3 suggest that the

drop block has hardly any influence on the performance on Market-

1501. On the other hand, results on the CUHK03 dataset clearly

show that the drop block can lead to better generalization on the test

set and increases both metrics.

Table 3: Ablation study of training techniques. We investigate

our models performance under the specified training modifications.

Here, WCA indicates use of warmup cosine annealing, MS the use

of MS loss over triplet loss, DB the use of drop block, and OSNet

the use of OSNet over ResNet50 as backbone, respectively.

Configuration Market-1501 CUHK03-D

OSNet WCA MS DB r1 mAP r1 mAP

✗ ✗ ✗ ✗ 95.4 87.9 71.7 70.3

✗ ✓ ✓ ✓ 96.1 90.4 81.0 79.1

✓ ✗ ✗ ✗ 96.1 90.2 78.2 75.2

✓ ✓ ✗ ✗ 96.2 91.1 83.5 81.1

✓ ✓ ✗ ✓ 96.3 91.5 83.2 80.9

✓ ✗ ✓ ✓ 96.0 90.6 78.8 76.3

✓ ✓ ✓ ✗ 96.2 91.2 83.4 80.9

✓ ✓ ✓ ✓ 96.3 91.5 84.9 82.4

Influence of Loss Functions. We trained various modifications of

our model with triplet loss instead of MS loss. Using MS loss in the

final model slightly increases the rank-1 and mAP performance on

CUHK03, but not on Market-1501. Thus, the choice of ranking loss

function can be important for generalization on smaller datasets.

5. CONCLUSION

We have presented a multi-branch neural network that achieves state-

of-the-art results on Market-1501 and CUHK03. Although branches

increase the overall parameter count, we can keep the overall model

complexity low by utilizing a lightweight OSNet backbone and suit-

able training techniques. The distinct branches of our network can

capture the essential person features. Overall our research suggests

that learning rate schedules and the backbone choice heavily influ-

ence the model performance and that drop blocks and MS loss assist

the model in generalizing the smaller CUHK03 dataset. We con-

clude that multi-branch architectures should focus on the right com-

bination of training techniques and OSNet feature extraction in favor

of adding model complexity.
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