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ABSTRACT

Human is able to conduct 3D recognition by a limited number
of haptic contacts between the target object and his/her fingers
without seeing the object. This capability is defined as ‘hap-
tic glance’ in cognitive neuroscience. Most of the existing
3D recognition models were developed based on dense 3D
data. Nonetheless, in many real-life use cases, where robots
are used to collect 3D data by haptic exploration, only a lim-
ited number of 3D points could be collected. In this study, we
thus focus on solving the intractable problem of how to ob-
tain cognitively representative 3D key-points of a target ob-
ject with limited interactions between the robot and the ob-
ject. A novel reinforcement learning based framework is pro-
posed, where the haptic exploration procedure (the agent iter-
atively predicts the next position for the robot to explore) is
optimized simultaneously with the objective 3D recognition
with actively collected 3D points. As the model is rewarded
only when the 3D object is accurately recognized, it is driven
to find the sparse yet efficient haptic-perceptual 3D represen-
tation of the object. Experimental results show that our pro-
posed model outperforms the state of the art models.

Index Terms— 3D object recognition, 3D haptic-perceptual

representation, reinforcement learning, robotic interaction

1. INTRODUCTION

With the booming of deep learning, the community has wit-
nessed significant strides in 3D object recognition over the
last decade. Most of the existing 3D object recognition mod-
els were training on the dataset that consists of dense, clutter-
free, canonicalized 3D data. It was proven in a recent study
that [1] most of the existing STate-Of-Art (STOA) models,
including the ones proposed in [2} 3, 4} [} [6] /7, 8, [0} 10} 111,
perform significantly poorer on more challenging sets, where
the data are with noise, missing parts, sparser points, etc.
In stark contrast to those models, humans is capable of mak-
ing reliable decisions with a limited sequence of exploratory
movements that provide the most information for the task, re-
garding what the object is and what to expect from possible
exploratory movements based on prior knowledge [12]. This
capability of object recognition by a limited number of local
tactile cues is defined as ‘haptic glance’ [14].
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Fig. 1. (a) Use case example; (b) demonstration of reinforce-
ment learning based 3D points collection

Robots are envisioned to replace humans for dangerous,
inaccessible tasks [15]], and are applied in many real-life sce-
narios. They are of great piratical values, especially for vi-
sually unreachable areas exploration, where limited visual in-
formation could be obtained. Specifically, robots could be
applied to locate, identify, and manipulate/interact with ob-
jects under the ground, river/drain (for under-river salvage)
etc. with different well-chosen movement schemes as de-
picted in Fig[Ta] This type of robotic application is known as
‘haptic exploration’. The fundamental bottleneck within the
haptic exploration framework resides in the fact that 1) only a
limited number of points could be collected, especially in our
case when only one tactile sensor is utilized, which ends out
to sparse 3D representations; 2) not all the exploration trials
successfully reach a target object, which brings the noise to
the collected data; 3) exploration may only provide partial in-
formation of the object, resulting in missing objects’ parts. In
this study, to disentangle the aforementioned obstacles, and
further endow the robot with the capability of ‘haptic glance’,
we propose a novel reinforcement learning based framework
to learn a sparse yet efficient 3D representation.

2. THE PROPOSED FRAMEWORK

2.1. Simulation of Target Use Case Scenario

Similar to the setup designed in [16]], an in-house simulator
was developed to simulate the real-life robot exploration sce-
nario and facilitate the training, testing procedures of the pro-
posed framework. Concretely, a fixed robot was simulated
to conduct haptic exploration via sequential tactile probes for
3D recognition to mimic a real-life robotic scenario, where



limited visual data could be obtained. An example is de-
picted in Fig[la] Within the simulated environment, 3D ob-
jects can be placed and accessed by a robotic hand via haptic
probe. The robot hand is equipped with a tactile sensor that
measures Uj.,, as illustrated in @ to send back pressure-
sensation information regarding whether current exploration
touches a object or not.

Each 3D point is represented by a three-dimensional co-
ordinate (x, y, z), with the origin O of the corresponding co-
ordinate system set as elucidated in Fig. Since we aim
at recognizing possible invisible objects positioned under the
ground, river/drain etc., each exploration point is constrained
to reach the surface of the ground/river, ie., Z = 0. As
such, for each exploration, the starting point is represented
by this surface position P and the corresponding orientation
. Bach P is defined with the coordinate (P,, P,, P,), where
P, =0, and ¥ with 3 components (U, Uy, U,).
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Fig. 2. Illustration of objects within the coordinate system.
In most of the practical cases, robots scan unexplored
areas line-by-line, to ease the transition between the sim-
ulation and real-life robotic operation, in this study, haptic
exploration was also conducted in a similar fashion. In an-
other word, a certain constant P, value is first selected, and
then the robot hand explores along the X axis progressively.
This further defines the line of all possible entry points,
i.e., by projecting P to the X axis, which is named as the
‘probe line’ as highlighted in Fig. U, is constrained
to be negative, so that probes only fall in the areas, where
possible 3D object is positioned. For each exploratory probe
{P, 7}, when the sensor reaches an object, this touched point
(Xobss Yobss Zobs) is then calculated within the Ray-casting
system [[17] regarding Uj.,,. In addition, the variable 7" is set
to one, when the sensor touches the object. 3D object could
be placed at any initialized position (X;pit, Yinit, Zinit) With
any rotations R, R, and R, as illustrated in fig. 2]
2.2. The Reinforcement Haptic Glance Framework
The overall diagram of the proposed reinforcement learning
based haptic exploration framework is illustrated in Fig.
Each probe, i.e., haptic glance, during the haptic exploration
could be parameterized by its position P and orientation .
In this study, the haptic control is composed of two parts, in-
cluding (1) a low-level haptic explorer described by Gaussian
distributions P ~ N (up,03) and W« N (pz, 02 ), which
are parameterized by pp,op, 4,05 ; and (2) a high-level
reinforcement learner that learns the aforementioned explo-

ration parameters and guarantees the success of 3D recogni-
tion. Haptic control and 3D object recognition are achieved
via 4 main modules including (a) the Point Cloud Represen-
tation Network (PCRN) with Per Point Context Aware Repre-
sentation Blocks (P2-CARB), (b) the location network, (c) the
classifier, and (d) the reinforcement learning scheme. Details
of each module are given below.

(a) The PCRN: the objective of the framework is to it-
eratively sample N points via haptic exploration in order to
classify a target object among M possible object categories.
Formally, for each step k between 1 and N, the framework
first cast a probe request (P, u_;z ), and the simulator returns a
3D point (X, Yz, Zk, Tk). Each new probe request is stored
in a probe request sequence Sp = {(Py,ut), k € [1,N]}.
Additionally, each corresponding point sample is stored in
the collected points sequence S¢ = {(Xx, Yk, Zr, Tk), k €
[1,N]}. After each probe, the two sequences are embed-
ded into one mutual representation space by employing the
P2-CARB. P2-CARB is a permutation invariant network that
is based on the PointGrow Context Aware (CA) with Self-
Attention Context Awareness (SACA) operation [[18]. In con-
crete words, after taking IV feature vectors as input, CA op-
eration outputs NV feature vector. Each output vector contains
information of all the previous collected points aggregated by
mean pooling, i.e., a permutation invariant operation. SACA
is a self-adaptive version of CA, allowing to output, for each
point, a weighted aggregation of previous collected points.
The self-attention weights are learned by a Multi-Layer per-
ceptron (MLP), taking a concatenation of point features and
context aware features as input. Thus, SACA-A operation is
adapted in our framework. The P2-CARB is detailed on the
right top of Fig. 3]

Each MLP layer represents a set of MLP sharing the same
weights, where each MLP processes its own input point inde-
pendently. Each MLP is constructed with a series of two fully
connected layers. Intermediatecontext aware representations
of probe requests sequence and collected points sequence are
extracted subsequently with 2 respective P2-CARBs. These
representations are then concatenated and fed into the cor-
responding MLP, which allows to learn the mutual context
aware representation of requests and relevant pre-collected
points. The whole PCRN process is summarized in Fig.
where each intermediate feature embedding dimensions are
highlighted in green. The probe request sequence is of size
N x 4, and P, is constrained to be a constant while P, is con-
strained to be 0. Then, P remains as the only variable to be
controlled. Along with the three components of orientation,
the request vector is of shape of 4. Taking the mutual rep-
resentation as input, the classifier seeks to classify the object
correctly, and the location network aims at predicting the next
location to be probed so that the classification accuracy of the
next iteration could be optimized.

(b) The Location Network is designed based on Point-
Grow [18]] to iteratively predict the next postion to explore by
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Fig. 3. The overall diagram of the proposed reinforcement learning based hepatic exploration and 3D object recognition model.
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Fig. 4. The two proposed versions of the classifier

computing the conditional distribution regarding all the pre-
vious generated points. Particularly, each new probe request
is generated as a conditional distribution of previous requests
associated to their corresponding collected points. For each
probe request, each component of the request is also gener-
ated as a conditional probability of the components of the pre-
vious probes using the masking mechanism illustrated in the
right bottom side of Fig. [3}

P (Py,ut) = P(Pyi| (Sr<i—1,Sc<i-1))

- P(Uzg| (Sr<k-1,Sc<k-1), Pyr)

- P(Uyr| (Sr<r—1, So<k-1) s Pyr, Uzk)

- P(Uz| (Sr<k-1,Sc<k-1) , Py, Uzi, Uyr)

As mentioned previously, the low-level haptic explorer is
parameterized by up,op, u-, 0. For the sake of readabil-
ity, we simply denote up and p; as p, and similarly, op and
o+ as 0. For each component of the probe request, N feature
vectors are extracted and aggregated by mean pooling, which
are used to predict the corresponding y and o parameters. Af-
terwards, the predicted p and o are further activated using
the tanh and sigmoid activation function respectively. Hence,
with the p and o, a stochastic prediction could be made for
each component of the next probe request.

(c) The 3D object Classifier: two versions of the classi-
fiers have been developed using the PCRN representation, as
represented in Fig. ] The first module, namely PCRN-FC ,

ey

aggregates the information of all the probes (all the collected
3D points) by mean pooling and further feed them to a se-
ries of two Fully Connected (FC) layers for 3D object clas-
sification. The PCRN-N-class version is constituted of N
classifiers, where [V is the number of probe/glance performed
during exploration. With the designed ‘probe mask’, i.e., an
1/0 matrix that output only the information of current glance,
each classifier is dedicate to classify 3D objects regarding the
corresponding probe.

(d) the Reinforcement Learning Scheme: we adapt the
algorithm from [19] to train our framework, which allows the
joint learning of sequential haptic exploration and the effi-
cient sparse 3D representation of an object by optimizing the
expected cumulative reward J(6) :

N—-1
JO)=E > riplmel, ()
k=0

where 7y is the policy that predicts the next action to perform
ay, regarding the current state s;. In this study, the next ac-
tion is considered as the next probe request, where the policy
is defined based on the Gaussian distributions that specify all
the elements of the probe (P, 7). By this means, the pol-
icy is parameterized directly by p and o values outputted by
the location network. Since these values are computed di-
rectly from PCRN, the optimization of the policy facilitates
the learning of the mutual representation of probe requests
and collected points sequences. At each time step, the frame-
work tries to classify the object in the ground. It is then re-
warded by r, = 1 if the classification is correct and by r, = 0
otherwise. By doing so, the point cloud representations is ex-
pected to be trained to highlight inter-point relations that are
discriminatory among the available objects classes. With an
analogous recipe, the location network is trained to identify
new points leading to a sparse yet efficient 3D representation
that help in discriminating the object. The policy gradient
Vo J(0) is defined as: N

VQJ(H) = Z V@log<ﬂ'9(ak,8k))Gk (3)
k=0
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Fig. 5. (a) 4 objects in our dataset; (b) performances of STOA
3D recognition models on sparse, noisy, 3D object sets.

where G(k) = g;,lcﬂ ¥ Tk, and 7 is the dis-
counted factor that weights the rewards w.r.t their time dis-
tance from the current state. In this work, the log-policy gra-

dients for each probe request component x are given by:

k' —k+1

€ — 810g/\g(x;u70) _ —2u @
n o
dlogN (zip,0)  (z—p)° —o?
o = = f ®)
Oo o3

To take the classification task into account in the optimiza-
tion process, a categorical cross entropy loss is incorporated
to the policy gradient to form a Hybrid Update Rule Ay :

Ag = —alB(ri = be)(€up, + Sop, + Euve + Eova T

9 (6)
gl"Uy + gUUy +&up. + EJUZ) + Z Yo log (7. (0))]
0=0

where « is the learning rate, 3 is a weight balancing the
exploration and classification tasks. O denotes the set of
available objects. y, = 1, if o is the object in the space to
explore, y, = 0 otherwise. 7.(0) indicates the probability
that o is the object presented, according to the classifier. by
is the reinforcement learning baseline [[19]] outputted by the
framework as shown in the left-bottom part of Fig.[3] This
term reduces the variances of policy gradients variance.

3. EXPERIMENT

3.1. Experimental setup

Similar to the setup in [[16], we constructed a 3D dataset
with 4 objects that appear frequently in real-life robotic hap-
tic exploration scenario. The four 3D objects are shown
in Fig. fal The state-of-the-art haptic shape exploration
model [16] based on LSTM was readjusted to our applica-
tion (simulator) by adapting the input/output. It is denoted
as ‘LSTM’ in this paper, and considered as the baseline
model. For fair comparisons, optimized hyper-parameters
were employed. Each model was trained for 8000 steps,
where each step is composed of a batch of 64 objects. Every
object was randomly chosen between the four available cat-
egories with equal probability. The objects were randomly
placed in simulation, with random rotations R, € [—10, 10],

R, € [-10,10] and R, € [—180,180], within an accessible
range. Sub-sets of positions/orientations ranges are kept apart
as held-out test set for the evaluation [16]].

The overall results in terms of averaged accuracy across
all the objects are summarized in Table [3.1] where the clas-
sification with different number of probes were reported. In
this work, only 10 probes/glances were considered as done
in [16]. As observed, both the proposed PCRN-N-class and
PCRN-FC outperform the baseline at the 10, probe. PCRN-
FC is superior to the other the two models in terms of classi-
fication accuracy at each probe. It is showcased that the pro-
posed framework with N classifiers achieves higher accuracy
at the final probe by selecting only the top key 3D points with
the ‘probe mask’, while the version with sequential FC layers
achieves progressively better accuracy at each prob by using
all the collected probe, but slightly worse performance at the

last glance. They could be employed in different situations.
Table 1. Performances of haptic exploration models.

Probes LSTM [[16] | PCRN-N-class | PCRN-FC
2 0.308 0.205 0.416
3 0.304 0.112 0.505
4 0.289 0.222 0.576
5 0.298 0.286 0.615
6 0.331 0.345 0.649
7 0.526 0.429 0.670
8 0.577 0.506 0.687
9 0.703 0.695 0.710
10 0.723 0.843 0.796

To further evaluate the performances of common 3D ob-
ject recognition models under a similar haptic exploration
scenario, we further construct a noisy sparse 3D objects set
(same 4 objects) and tested STOA 3D object recognition mod-
els on it. More specifically, each object instance was obtained
by randomly sampling 10 points from the original 3D objects
with a certain percentage of noise. In this study, ‘noise’ was
defined as point that does not fall on the 3D object, to mimic
the real-life haptic exploration scenario. As verified in [1]],
among the 10 tested STOA 3D recognition models, solely
PointNet [2] and DGCNN [20] were relatively robust un-
der the setting with noise, missing object parts, significantly
sparser points etc. Therefore, these two models were tested
and the results are reported in Fig.[5b] It is demonstrated that,
even though with 0% noise, the performances (acc less than
0.79) of this two models are worse compared to the proposed
models. Moreover, their performances drop significantly with
the increase of noise rate.

4. CONCLUSION

In this study, we propose a novel reinforcement learning
framework that enables robot for the haptic glance, i.e., con-
duct 3D object recognition with sparse yet efficient represen-
tation. According to the experimental results, existing 3D
object recognition models fail to perform decently for haptic
exploration with noisy and sparse 3D data. Conversely, our
models achieve decent accuracy and surpass the state-of-the-
art haptic exploration model.
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