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Abstract

Action recognition and detection in the context of long
untrimmed video sequences has seen an increased attention
from the research community. However, annotation of com-
plex activities is usually time consuming and challenging
in practice. Therefore, recent works started to tackle the
problem of unsupervised learning of sub-actions in com-
plex activities. This paper proposes a novel approach for
unsupervised sub-action learning in complex activities. The
proposed method maps both visual and temporal represen-
tations to a latent space where the sub-actions are learnt
discriminatively in an end-to-end fashion. To this end, we
propose to learn sub-actions as latent concepts and a novel
discriminative latent concept learning (DLCL) module aids
in learning sub-actions. The proposed DLCL module lends
on the idea of latent concepts to learn compact represen-
tations in the latent embedding space in an unsupervised
way. The result is a set of latent vectors that can be in-
terpreted as cluster centers in the embedding space. The
latent space itself is formed by a joint visual and temporal
embedding capturing the visual similarity and temporal or-
dering of the data. Our joint learning with discriminative
latent concept module is novel which eliminates the need
for explicit clustering. We validate our approach on three
benchmark datasets and show that the proposed combina-
tion of visual-temporal embedding and discriminative latent
concepts allow to learn robust action representations in an
unsupervised setting.

1. Introduction
Recent years have seen a great progress in video activ-

ity analysis. However, most of this research is focused on
the classification of short video clips with atomic or short-
range actions [1, 2, 3]. This is a relatively easier task when
compared with analysis of untrimmed and complex video
sequences [4, 5, 6, 7, 8, 9, 10, 11, 12]. In untrimmed video
analysis, the focus is either on the problem of temporal ac-
tion localization [13, 14, 15, 16], where only a set of key
actions is considered in untrimmed videos; or on the task of

Figure 1: Overview of the proposed approach. Given videos of a
complex activity, the proposed model learns sub-actions as latent
concepts in an end-to-end manner. The latent concept assignment
for each input video segment feature forms sub-action prediction
shown as ‘Initial Predictions’, which is then refined using Viterbi
to generate ‘Final Predictions’. Sample results for activity ‘Make
Chocolate Milk’, it can be seen that the latent concepts are able
to group sub-actions. The sub-action ‘pour-milk’ includes lifting
bottle and pouring milk; the jitter can be associated to the confu-
sion when either a chocolate/milk bottle is lifted.

temporal action segmentation [9, 10, 17, 18, 19, 20], where
each frame of the video is associated with a respective sub-
action class as it requires to identify sub-actions and also
temporally localize them.

Existing works on temporal action segmentation mainly
explore supervised approaches where frame-level annota-
tions are required for all the sub-actions [21, 8, 12, 9,
22, 11, 23]. However, complex activities are usually long-
ranged and obtaining frame-level annotation is arduous and
expensive. A new line of research focuses on learning these
sub-actions from videos of a complex activity in an unsu-
pervised setting [4, 5, 19, 10, 24] . In the unsupervised set-
ting, the problem is even more challenging as it requires (i)
breaking down a complex activity video into semantically
meaningful sub-actions; and (ii) capturing the temporal re-
lationship between the sub-actions. Most approaches tackle
this problem in two stages, where during the first stage an
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embedding based on visual and/or temporal information is
learned, and in the second stage clustering is applied on this
embedding space. This limits the learning ability by pre-
venting the embedding to actually learn from clustering. At
the same time, performing explicit clustering which is inde-
pendent of embedding learning makes the model less effi-
cient and does not utilize end-to-end learning.

To address this problem, we propose an end-to-end ap-
proach where sub-actions are learned by combining embed-
ding and latent concepts. Here, the embedding space is
trained jointly with the latent concepts leading to an effec-
tive sub-action discovery as shown in Figure 1. To allow
for such a joint training, we propose a novel discriminative
latent concept learning (DLCL) module which combines la-
tent concept learning with a contrastive loss to ensure that
the sub-actions learnt in the latent embedding are distant.
The resulting latent concept vectors can be interpreted as
cluster centers, removing the need for explicit clustering at
a later stage.

As the sub-actions are softly bound to the temporal po-
sition of each activity, incorporating temporal ordering is
crucial. Recent works [10, 19] incorporated temporal em-
bedding either by predicting the discrete temporal entities
or by learning continuous temporal embedding with shallow
MLP architectures. In those cases, the temporal information
is only given by a discrete or continuous scalar value and
the joint embedding space is constructed by predicting this
value from the input. To learn better spatio-temporal rep-
resentations, we propose to use temporal position encod-
ing [25] instead of scalar values and learn the respective
embedding space by jointly reconstructing both visual and
temporal representations. This embedding is further trained
jointly with constrastive loss of the latent concept module,
so that the embedding is also guided by and contributes to
overall clustering.

We evaluate our method on three benchmark datasets:
Breakfast [8], 50Salads [26] and YouTube Instructions [5].
For the evaluation at test time, we follow the protocol from
[19] and employ the Viterbi algorithm to decode the initial
sub-action predictions into coherent segments based on the
ordered clustering of the sub-action latent concepts. A de-
tailed analysis shows the impact of the proposed elements,
the reconstruction and well as the latent concept learning.

In summary, we propose a novel end-to-end unsuper-
vised approach for sub-action learning in complex activi-
ties. We make the following contributions in this work:

• We propose an unsupervised end-to-end approach for
sub-action learning in complex activities by jointly
learning an embedding which simultaneously incorpo-
rates visual and temporal information.

• We learn discriminative latent concepts using con-
trastive loss, thus integrating clustering as part of latent
embedding learning.

• Our method improves the state-of-the-art on three
benchmark datasets.

2. Related Work
Recently, there has been a lot of interest in learning with

less supervision. This is essential for both action [3, 1, 2]
and complex activity understanding [12, 27, 11], as super-
vised approaches require a large number of frames to be
annotated in videos, which is expensive, tedious and cannot
be scaled to large datasets. Weakly supervised approaches
use a video and readily available information like accompa-
nying text narration or audio. Some works [28, 29] use as-
sociated text narrations or scripts for learning actions in the
video. Another line of work with weak-supervision include
the works where it is assumed that the order of sub-actions
is known [17, 30, 31, 32], however the per-frame annota-
tions between video and sub-actions are not known during
training. Authors in [33] propose to use combination of au-
dio, text and video to identify steps in instructional videos
in kitchen setting. The performance of the above methods
is highly dependent on both the availability and quality of
the text/audio alignment to video, which is not guaranteed
and heavily limit their application.

There have been some works, in which the assump-
tion of weak supervision have been removed in learning
of action classes. One of the first works with no super-
vision addressed the problem of human motion segmenta-
tion [34] based on sensory-motor data, and proposed an
application of a parallel synchronous grammar, to learn
simple action representations similar to words in language.
Later, a Bayesian non-parametric approach to concurrently
model multiple sets of time series data was proposed in
[35]. However, this work only focuses on motion cap-
ture data. [36, 37] benefit from the temporal structure of
videos to fine-tune networks without any labels. Addition-
ally, [38, 39, 40, 41] also leverage the temporal structure of
videos to learn feature representation to learn actions.

Recently, unsupervised approaches have been proposed
to learn sub-actions in complex activity. [10, 19, 24] pro-
pose unsupervised approaches for temporal segmentation
of complex activity into sub-actions. While [4] proposes
to solve a variant of the problem where the goal is to de-
tect event boundaries, i.e. event boundary segmentation for
complex activities. This does not focus on identifying sub-
actions, instead it learns to identify boundaries across multi-
ple sub-actions in long videos. A self-supervised predictive
learning framework is proposed to solve by utilizing the dif-
ference between observed and predicted frame features to
determine event boundaries in complex activities.

In this work, we focus on solving the temporal seg-
mentation of complex activity into sub-actions as shown
in [10, 19, 24]. In [10], an iterative approach is proposed
that alternates between discriminative learning and gener-
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Figure 2: Overview of the proposed model. Given videos for a complex activity, we extract visual features (Xnm) and compute positional
encoding vectors (ρnm) which are fed to the encoder to map them to a joint latent embedding for learning sub-action clusters. To learn
these sub-action clusters as latent concepts Ŷ , an attention block (D) is used which takes in randomly initialized vectors (Y ) along with
φnm and learns the latent concepts. We use contrastive loss to learn Ŷ discriminatively in B. Here α, znm and Ŷk represent attention,
latent vector for input Xnm and kth latent concept respectively.

ative modeling. For discriminative learning, they map the
visual features into latent space using a ‘linear’ transforma-
tion and compute the weight matrix which minimizes the
pairwise ranking loss. For temporal ordering they use Gen-
eralized Mallows Model which models distributions over
permutations as they formulate complex activity as a se-
quence of permutable sub-actions. In [19], the model in-
corporates the continuous temporal ordering of frames in
a joint embedding space. This is achieved by training a
regressor to predict the timestamp of frames in a video.
The hidden layer representations are used as the embedding
for clustering and the clusters are ordered with respect to
their time stamp. We refer to this model as CTE (Continu-
ous Temporal Embedding). In [24], two-stage embedding
pipeline is proposed where a next frame prediction U-Net
model in stage one is combined with with temporal discrim-
inator in stage two followed by clustering. The temporal
embedding model employed is similar to [19].

Latent embedding learning is crucial for unsupervised
learning, recently [7] formulated learning graph based la-
tent embedding using latent concepts for supervised classi-
fication of complex activities. The intuition was to model
long range videos using latent concepts as graphical nodes
for complex activity recognition. Inspired by their ideology
of latent concept learning to model latent space, we propose
DLCL as an unsupervised latent learning module with joint
embedding learning to model sub-actions.

Most of the above works in unsupervised learning in-
volve two stage process which does not utilize end-to-end
learning making them less efficient as clustering is inde-

pendent of embedding learning. In this work, we present an
end-to-end model where clustering is incorporated in em-
bedding learning using a constrastive loss. To incorporate
temporal ordering we propose to use positional encodings
and we also propose an effective way to unify visual and
temporal representations to learn a visual-temporal embed-
ding by jointly reconstructing visual and temporal represen-
tations. The proposed latent embedding is not only better at
capturing visual & temporal representations but also clus-
tering friendly. We demonstrate later in this paper the use-
fulness of the proposed model both qualitatively and quan-
titatively.

3. Proposed Model
3.1. Overview

Given a set of N videos, {Vn}Nn=1, for a complex ac-
tivity, we divide each video into segments and for each
segment we extract I3D features [1] , and compute posi-
tional encoding vectors [25] as described in Section 3.2.
Each video is represented by Mn features where Xnm rep-
resent the mth feature in the nth video, and its correspond-
ing positional encoding is represented by ρnm. The task
is to learn the sub-actions and their ordering for each ac-
tivity, i.e., by predicting sequence of a sub-action labels
lnm ∈ {1, 2, ...,K} for each feature Xnm for each video.
The number of sub-actions labels K for each activity is the
maximum number of possible sub-actions as they occur in
that activity.

Overview of our proposed model is shown in Figure 2.
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First we learn an encoded representation of Xnm and ρnm
shown as φnm, which is passed as input feature to the
‘Attention Block’ (shown as D in Figure 2) to learn the
latent concepts/clusters which are representative of sub-
actions. The attention block learns the latent concepts
Ŷ ∈ {Ŷ1, Ŷ2, ..., ŶK} discriminatively, where each input
feature (φnm) is assigned to only one latent concept. We
use a combination of reconstruction loss and constrastive
loss to learn the embedding(shown as B in Figure 2). We
believe that using a combination of both visual and temporal
information in conjunction with latent concept learning to
learn a latent embedding (shown as block B in fig. 2) makes
our model more robust. We evaluate the performance of our
model based on latent concept assignments for each input
feature which forms ‘Initial Predictions’. Then, we model
the sub-action transitions and perform Viterbi decoding to
estimate optimal sub-action ordering.

Note that unlike previous works [19], we do not per-
form explicit clustering, instead our model learns to cluster
features in latent space as discussed in Section 3.2 & 3.3.
Thus eliminating the need for all the data to be available at
once, our model can learn the latent concepts incrementally.
The resulting sub-action latent concepts are temporally or-
dered and then each video is decoded w.r.t the above order-
ing given initial sub-action probability assignments for each
clip to each latent concept as described in Section 3.5.

3.2. Joint Visual and Temporal Latent Embedding

In unsupervised learning, the approach to learn clusters
in latent space plays a critical role in learning semantically
meaningful clusters. We employ an encoder-decoder model
to obtain the latent representation. Skip-connections are in-
cluded between encoder and decoder (shown as C in Fig-
ure 2), as they help to preserve commonality of an action
and reduce redundant information like background in latent
representation.

For incorporating temporal ordering in our model, we
employ the positional encodings inspired by [25]. We di-
vide the video segment sequence into g equal groups and
then use the ordering index to compute positional encod-
ing vectors. Quantizing temporal index of the video clip
and using a positional encoding not only captures relative
positioning but also makes it easy to generalize for highly
varying video lengths. The idea of learning a mapping
from features to joint visual and temporal embedding with
an encoder-decoder aids in grouping clips into sub-actions
in the latent space. The reconstruction loss for the auto-
encoder is composed of visual features and positional en-
coding as shown below,

Lossr = L(Xnm, X′nm) + β ∗ L(ρnm, ρ
′
nm), (1)

where, Xnm, X′nm respectively represent input and recon-
structed visual feature; ρnm, ρ′nm respectively represent in-

put and reconstructed positional encoding; β is a hyperpa-
rameter andL is a loss function penalizing X′nm and ρ′nm for
being dissimilar from Xnm and ρnm respectively, namely
mean squared error. A combination of latent visual feature
representation and the positional encodings becomes input
to the ‘Attention Block’. In order to ensure that the learnt
clusters are representative of sub-actions, the clusters have
to be distant in the latent space, which is described in the
next section.

3.3. Discriminative Latent Concept Learning

The idea behind having this module is to learn the sub-
action clusters discriminatively in the latent space in an end-
to-end fashion, eliminating the need for explicit clustering.
The attention block is inspired by [7], which takes an input
feature (φnm) and randomly initialized latent vectors (Y )
which is analogous to cluster center initialization as shown
in Figure 2. The latent concepts (Ŷ ) are learnt using an
MLP with weight (w) and bias (b) i.e., it transforms the
random latent vector initializations (Y ) to latent concepts
(Ŷ ) as Ŷ = w ∗ Y + b. Though latent vector initializa-
tion (Y ) is fixed, w & b are learnable parameters making
the latent concepts (Ŷ ) learnable in the latent space. These
latent concepts which represent cluster centers are learned
by minimizing the contrastive loss by moving features in
the latent space closer to the latent concepts. The similar-
ity between input feature (φnm) and latent concepts (Ŷ ) is
measured with the dot product ⊗. Then, activation func-
tion σ is applied on the similarities to compute activation
values α i.e., α = σ(φnm ∗ Ŷ T ). Finally, the attended la-
tent vector representation is computed as Znm = α � Ŷ ,
which captures how much each latent concept is related to
the given input feature. However, these latent concepts tend
to learn similar/overlapping concepts, which is not what we
intend to learn. Our objective in learning the latent con-
cepts is to cluster the latent representations discriminatively.
We achieve this with a contrastive loss, where the similar-
ity between latent vectors of the same sub-action with the
maximum confident latent concept is maximized, while the
similarity w.r.t other latent concepts is minimized as shown
in Eq 2.

Lossd(Znm, Ŷ ) = −log esim(Znm,Ŷk∗ )∑
k 6=k∗ esim(Znm,Ŷk)

(2)

where, Ŷk represents the latent concept associated with kth

sub-action, sim denotes cosine similarity and k∗ represents
the latent concept with maximum confidence probability for
Znm as shown below

k∗ = argmax
k

P (k|Znm) (3)

where P (k|Znm) = σ(sim(Znm, Ŷk)) represents the confi-
dence probability of latent vectorZnm for the latent concept
Ŷk, σ is softmax activation.
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Figure 3: Qualitative comparison of initial predictions (w/o
viterbi) and after Viterbi predictions of our approach for activity
‘Make Tea’. It can be seen that our model (‘Init’) is able to group
sub-actions and also learn the ordering of sub-actions for an ac-
tivity. The jitter in sub-action predictions occurs during transition
from one sub-action to next, which is expected during transition.
Finally, using transition modeling Viterbi decoding smoothness
the jitter between sub-action transitions.

3.4. Overall Loss.

Total loss for learning the proposed embedding is com-
posed of losses from Section 3.2 and 3.3 as Loss = λ ∗
Lossr + γ ∗ Lossd

3.5. Temporal Segmentation

Initial Predictions At test time, we first assign each feature
in video to its respective closest latent concept vector using
Eq 3. This gives initial predictions directly based on the
embedding (shown as predictions in Figure 1). For ease of
understanding, we refer to those as latent sets, analogous to
clusters, from here on.
Transition modeling and Viterbi decoding
Figure 4 represents a brief outline for transition modeling
and Viterbi decoding. To allow for a temporal decoding,
the global ordering of the latent sets needs to be estimated.
We follow here the protocol proposed by [19] and compute
the mean timestamp for each set (shown as T in Figure 4)
and sort them in ascending order. The last set in the sorted
ordering becomes the terminal state and using this ordering
the sub-action state transition probabilities from sub-action
i to j are defined as P (j|i) given:

P (j|i) =


0.5, if j immediately follows i
0.5, if i = j

1.0, if i = j & j is terminal state
0, otherwise

(4)

Decoding Finally, we use the ordering and transition
probabilities to compute the best path for the set ordering
given the input features Xnm and ρnm. Using Eq. 3 we com-
pute the probability of each embedded input feature (Znm)
belonging to the latent set k. We maximize the probability
of the input sequence following the order defined by Eq. 4

Figure 4: Brief overview of transition modeling and Viterbi de-
coding. Each latent concept is color coded (best viewed in color).
The latent concepts are ordered w.r.t the mean time (shown as T )
and each video is decoded into coherent segments using Viterbi
algorithm based on the ordered sub-action latent concepts.

to get consistent latent set assignments in a video by maxi-
mizing,

l̄Mn
1 = argmax

l1,...,lMn

Mn∏
m=1

P (lm|lm−1) ∗ P (lm|Znm), (5)

where l1, ..., lm ∈ {1, 2, ...,K} represent the set label se-
quence for nth video, P (lm = k|Znm) is the probability
that Znm belongs to the kth latent set (as described in Sec-
tion 3.3), l̄Mn

1 is the set label sequence for the maximum
likelihood for nth video.

4. Experiments
For our experiments, we define a segment as a sequence

of 8 frames. The video segment sequence is divided into
128 equal groups and then the ordering index is used to
compute positional encoding [25] for each segment. We ex-
tract I3D features (layer ‘mixed 5c’) which is fed to the en-
coder. Our embedding dimension is 1024. We use a 3-layer
encoder-decoder with Adam optimizer and the learning rate
is set to 1× 10−4. We evaluate our approach on 3 datasets.
Breakfast Dataset comprises of 10 complex activities of
humans performing common kitchen activities. There are
a total of 48 sub-activities in 1, 712 videos with varying
lengths based on activity and preparation style with vari-
ations in sub-action orderings.
50Salads Dataset contains videos of duration 4.5 hours for
a single complex activity ‘making mixed salad’. It is a mul-
timodal dataset, as it includes RGB frames, depth maps and
accelerometer data. However, we only use RGB frames. The
videos in this dataset are much longer with average frame
length of 10k frames and provides annotations at multiple
granularity levels.
YouTube Instructions Dataset has 5 activities and 150
videos with 47 sub-actions. These videos are taken from
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(a) Make Cereals

(b) Make Chocolate Milk

Figure 5: Illustrative comparison with state-of-the-art. By com-
paring with CTE (Init) and Ours (Init), we show that our approach
learns to model sub-actions with very few intermittent sub-action
transitions leading to effective grouping of sub-actions. Then,
Viterbi decoding helps to smoothen the intermittent jitters in pre-
dictions. We show that our method provides coherent sub-action
predictions and is able to capture the orderings for sub-actions.

Method F1-score MoF

Weakly Supervised

RNN-FC [42] 33.3%
TCFPN [17] 38.4%
NN-Vit [32] 43%
D3TW [43] 45.7%
CDFL [44] 50.2%

Unsupervised

Mallow [10] - 34.6%
CTE [19] 26.4% 41.8%
JVT [24] 29.9% 48.1%

Ours 31.9% 47.4%

LSTM-AL [4]* - 42.9%*
Ours* - 74.6%*

Table 1: Comparison of the proposed method to state-of-the-art
on Breakfast dataset. Here, * denotes results with video-based
Hungarian matching for the task event boundary segmentation.

YouTube directly and have background segments where
there is no sub-action. The frequency and spread of back-
ground varies based on activity as well as on the person
performing the task. Hence, the background segments nei-
ther have similar appearance nor have a temporal ordering.
Therefore the background segments would be assigned to
the latent concepts with very less confidence probability.
Following protocol in [19], we consider τ percent of clips
with least confidence as background. Only the foreground
labeled segments along with latent concepts assignments
form our initial predictions. We report results for back-
ground ratio of 60%.

Method MoC MoC

w/o Viterbi w Viterbi

CTE [19] with FV 20.9% 40.1%
CTE [19] with I3D 24.8% 36.8%

Ours with I3D 37.5% 46.9%

Table 2: Comparison of MoC (Mean over class) of all activities
on Breakfast dataset before and after applying Viterbi. FV repre-
sents Fisher Vectors.

Metrics Our model predicts a sequence of cluster labels
∈ {1, 2, ...,K} for each video without any correspondence
to theK ground-truth class labels. To map ground-truth and
prediction label correspondences, inline with [5, 10, 19],
for each activity we use the Hungarian method to find a one-
to-one mapping for each cluster to exactly one sub-action
and report performance after this mapping. In this work, we
use Mean over Frames (MoF) as used by [10, 19] as well
as F1-score used by [5]. In addition, we report Mean over
class (MoC) accuracy, as it averages the accuracy for each
activity class, therefore giving equal weights to all classes
irrespective of the underlying data distribution. MoF is the
percentage of correct predictions computed across all activ-
ity classes together, which can be affected by the underlying
activity classes distribution and biased towards dominant
activity class. For F1-score, similar to previous methods,
we report the mean score over all activities. For state-of-
the-art comparisons, we also evaluate our method for the
task of event boundary segmentation following the proto-
col in [4] and compare our method to [4] - indicated as
video-based Hungarian matching.

4.1. Comparison to state-of-the-art

Here, we compare the proposed method to state-of-the-
art approaches. We present the accuracy comparison with
recent works on Breakfast dataset in Table 1 and present the
performance on new metric MoC in Table 2. Our approach
achieves 47.4% MoF and 31.9% F1-score which is 2% gain
over state-of-the-art as shown in table 1. We show qualita-
tive evaluation of the proposed approach in Figure 3 & 5. In
Figure 5, we show that our approach models the sub-actions
coherently with very less intermittent sub-action transitions
along with learning ordering of sub-actions for complex ac-
tivity. For example, in Figure 3 our model predicts ‘stir-tea’
with intermittent transitions after ‘pour-water’, this occurs
when the person dips the tea bag in water which closely
resembles to the sub-action ‘stir-tea’ (as shown in last im-
age in Figure 3) and then it correctly predicts background
once the dip action ends (there is no annotation for ‘dip-
ping tea-bag’ in ground truth) indicating the goodness of the
proposed sub-action learning. The intermittent transitions
indicate that the model confuses to assign latent concept
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Method F1-score MoF

CTE [19] - 35.5%
JVT [24] - 30.6%

Ours 34.4% 42.2%

LSTM-AL [4]* - 60.6*%
Ours* - 70.2%*

Table 3: Comparison of the proposed method to state-of-the-art
unsupervised approaches on 50Salads dataset at granularity ‘eval’.
Here, * denotes results with video-based Hungarian matching for
the task event boundary segmentation.

based on single feature and Viterbi aids in generating more
coherent sub-action segments for the sequence as shown.
Additionally, we evaluate our method for the task of event
boundary segmentation and compare with the state-of-the-
art approaches. Our approach out-performs the state-of-the-
art MoF by a margin of 31% on Breakfast dataset indicating
the effectiveness of the proposed method to temporally seg-
ment meaningful sub-actions.

For 50Salads dataset, we perform evaluation on granu-
larity level ‘eval’ and provide state-of-the-art comparison in
Table 3. Our method out-performs [19] by 6.67% and [24]
by 11.6% with an F1-score of 34.37%. We further eval-
uate our method for the task of event boundary segmen-
tation and perform state-of-the-art comparison in Table 3.
We show 10% gain over state-of-the-art [4] MoF, indicating
our method is effective in sub-action learning for complex
events.

For YouTube Instructions dataset, we follow protocol in
[5, 10, 19] and report the performance of our approach with-
out considering the background frames. We achieve 42%
MoC & 43.8% MoF (as shown in Table 4). This is a 4.8%
gain in MoF over state-of-the-art method with comparable
F1-score. Note that [4] reported F1-score with background
frames included on YouTube Instructions Dataset. We fol-
low the same procedure and compare our method to [4] in
Table 4 (indicated with *). It can be seen that our method
outperforms the state-of-the-art for event boundary segmen-
tation task showing the sub-action learning capability to
identify better event boundaries.

4.2. Evaluation of the Embedding.

To demonstrate the impact of the proposed embedding,
we compare our Joint Embedding with Continuous Tempo-
ral Embedding in [19] in Table 2. From Table 2 (MoC w/o
viterbi), it can be seen that the proposed joint embedding
outperforms the continuous temporal embedding by a huge
margin of 16.6%. It can be seen that our ‘MoC w/o viterbi’
is closer to the CTE ‘MoC w Viterbi’ suggesting that our
embedding is very effective. To emphasize that our gain in

Method F1-score MoF

Frank-Wolfe [5] 24.4% 34.6%
Mallow [10] 27.0% 27.8%
CTE [19] 28.3% 39.0%
JVT [24] 29.9% 28.2%

Ours 29.6% 43.8%

LSTM-AL [4]* 39.7%* -
Ours* 45.4%* -

Table 4: Comparison of the proposed method to state-of-the-art
unsupervised methods on YouTube Instructions dataset. Here, *
denotes results with video-based Hungarian matching for the task
event boundary segmentation.

performance is due to the effectiveness of the approach and
not with using I3D features, we train [19] using I3D fea-
tures by keeping the embedding dimension same as ours and
compare the performance. As shown in Table 2, the MoC
w/o Viterbi improves by 4% by using I3D features on CTE,
while the MoC with Viterbi drops by 3% with 1% increase
in F1-score. However, our approach still outperforms the
baseline (with same embedding dimension) by huge margin
indicating our approach effectiveness.

Besides dataset level comparisons, we also show activity
level comparison with CTE [19]. Figure 6 (a) shows that our
joint embedding outperforms CTE on all activities indicat-
ing the significance of our joint embedding. We see a drop
in performance for activity ‘making cereals’ after Viterbi
decoding (from Figure 6(b)), this can be attributed to the
ordering of the sub-actions ‘take-bowl’ and ‘pour-cereals’.
For many samples in ‘making cereals’, the sub-action ‘take-
bowl’ does not occur impacting the ordering of both sub-
actions leading to drop in performance.

4.3. Ablation Experiments

We perform the below ablation studies on the breakfast
dataset.
Effect of Loss Components. To begin with, we first exam-
ine the influence of Lossr and Lossd on our model and the
performances are presented in Table 5. It can be seen that
having all loss components leads to best performance.
Effect of Discriminative learning. The use of constrastive
loss (Lossd) helps the clusters to move apart in the latent
space. This helps in obtaining more discrete boundaries in
the latent space. As shown in Table 5, the accuracy drasti-
cally reduces to 35.8% (11% ↓) indicating the importance
of discriminative learning.
Effect of Positional Encoding. Positional Encoding plays
a crucial role in our model. It helps to temporally group
the video clips in the latent space. As sub-actions are softly
bound to the temporal position for each activity, removing

7



(a) MoF w/o Viterbi

(b) Final MoF

Figure 6: Activity level MoF comparison on Breakfast dataset
with CTE [19]. Last column represents the average (MoC) for all
activities. (a) represents MoF for each activity without Viterbi i.e,
the MoF is computed based on the learnt cluster assignments. Our
method outperforms the baseline on all activities. (b) represents
MoF for each activity after applying Viterbi.

Lossr Lossd MoC

Lf Lp

3 - - 25.7%
- 3 - 33.6%
3 3 - 35.8%

3 - 3 40.2%
- 3 3 40.1%
3 3 3 46.9%

Table 5: Ablation experiments for the loss components are per-
formed on the Breakfast dataset. Lossr and Lossd represents
reconstruction loss and contrastive loss respectively. Lf and Lp

denote the reconstruction loss for feature and positional encoding
respectively.

reconstruction loss for positional encoding is expected to
deteriorate the model performance. We observe the simi-
lar trend in Table 5. Additionally, we perform an ablation
by removing the PE component branch and train our model
end-to-end. As expected, there is a significant reduction in
accuracy and F1-score (as shown in Table 6) indicating the
significance of using positional encoding.
Effect of Skip-Connections. To assess the effectiveness
of skip-connections, we report performance by removing
the skip-connections and train model end-to-end. We re-

Figure 7: MoF vs. #sub-actions for all activities in Breakfast
dataset. k represents the number of sub-actions from ground-truth;
we vary the sub-actions for each activity and report MoF.

port the performance in Table 6, it can be seen that w/o
skip-connections, the accuracy drops considerably indicat-
ing that the skip-connections help in learning better repre-
sentations.

w/o PE w/o SC full

MoC 40.9% 35.7% 46.9%
F1-score 20.3% 28.7% 31.9%

Table 6: Ablations experiments to evaluate the effect of PE and
SC on Breakfast dataset (w/o: without, PE: Positional Encoding,
SC: skip-connections).

Effect of Sub-actions Cluster Size. For all the above eval-
uations, the sub-action cluster size (K) is defined as men-
tioned in Section 3.1. To analyze the impact of sub-action
cluster size, we vary the number of sub-actions from K − 2
toK+2 whereK is the number of sub-actions as per ground
truth and evaluate performance. Figure 7 shows the MoF vs
number of sub-actions for each activity in Breakfast dataset.
For 6 out of 10 activities we see that having K sub-actions
leads to best performance.

5. Conclusion

In this work we proposed an end-to-end approach for
unsupervised learning of sub-actions in complex activities.
The main motivation behind this approach is to design a la-
tent space to incorporate visual as well as positional encod-
ing together. This latent space is learned via jointly train-
ing this embedding space in conjunction with a contrastive
learning for clustering. We show that this allows for a ro-
bust learning that on it’s own already results in a reason-
able clustering of sub-actions. We then predict optimal sub-
action sequence by employing the Viterbi algorithm which
outperforms all the other methods. Our evaluation shows
the impact of the proposed ideas and how they are able to
improve the performance on this task compared to existing
methods.
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