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Abstract—Decomposing an image through Fourier, DCT or
wavelet transforms is still a common approach in digital image
processing, in number of applications such as denoising. In this
context, data-driven dictionaries and in particular exploiting
the redundancy withing patches extracted from one or several
images allowed important improvements. This paper proposes
an original idea of constructing such an image-dependent basis
inspired by the principles of quantum many-body physics. The
similarity between two image patches is introduced in the
formalism through a term akin to interaction terms in quantum
mechanics. The main contribution of the paper is thus to
introduce this original way of exploiting quantum many-body
ideas in image processing, which opens interesting perspectives
in image denoising. The potential of the proposed adaptive
decomposition is illustrated through image denoising in presence
of additive white Gaussian noise, but the method can be used
for other types of noise such as image-dependent noise as well.
Finally, the results show that our method achieves comparable
or slightly better results than existing approaches.

Index Terms—Quantum many-body interaction, adaptive
transform, quantum denoising, quantum image processing.

I. INTRODUCTION

Transforming a noisy image into a sparse representation
using Fourier, DCT or wavelet basis vectors still remains a
major step for image restoration problems due to their ability
to preserve most of the image energy into few coefficients.
From these coefficients the clean image can be efficiently
estimated [1]–[3]. During the past two decades, the redundancy
between patches extracted from one or several images has been
shown to be a key aspect for number of denoising techniques
like non-local means (NLM) [4], dictionary learning [5], [6]
or block-matching and 3D filtering (BM3D) [7]. These data-
driven methods are designed to use the information from
neighbouring image-patches to preserve the local structures
of the target image.

In this paper, we propose a novel idea of image representa-
tion using the concepts of quantum many-body interaction [8].
Recently, several attempts of implementing quantum principles
in imaging application have been initiated, particularly for
image segmentation [9]–[11] or denoising [12]–[15]. Alter-
natively, designing image processing schemes for quantum
computers has been also largely explored (see, e.g., [16],
[17]), but is out of the scope of this work. Most of these
quantum image processing methods use the theory of quantum
mechanics for a single particle system to provide an adaptive
basis. In this present paper, we generalize such methods using

tools inspired by quantum many-body physics, which enable
to get a more versatile adaptive basis which takes into account
similarities between neighbouring image patches.

The image denoising problem using quantum principles
has been already discussed in some of our previous works
[14], [15], based on the single-particle framework. Although
this adaptive method has been shown to be very efficient for
different types of noise, it still faces some challenges, among
which the most important are: i) computational burden limits
its application to large scale images, ii) the method does not
take advantage of the structural properties of the image, which
are known to be useful in many algorithms. In this paper,
we propose to mitigate these drawbacks by exploiting ideas
of quantum many-body physics for constructing an adaptive
denoising method.

Interactions in quantum physics correspond to two or more
quantum particles present in the system that can influence each
other’s quantum state. From an image processing perspective,
we propose to adapt this theory to extend the idea of inter-
action between image patches. More precisely, the proposed
framework consists in placing a quantum particle in every
image-patch, i.e., every image-patch acts like a single particle
system, and the whole collection of patches, i.e. the image,
behaves like a many-body system where interactions describe
local similarities in the neighbouring patches.

The paper is organized as follows. We discuss the concepts
of quantum many-body interaction in Section II and develop
the idea of many-body interaction from an image processing
perspective in Section III. The proposed image denoising al-
gorithm is described in Section IV. Numerical experiments are
reported in Section V showing the efficiency of the proposed
method, before conclusions and perspectives in Section VI.

II. QUANTUM MANY-BODY INTERACTION

Quantum mechanics describes our world at a fundamental
level, and classical mechanics is merely an approximation
of quantum theory in a certain limit. In classical theory,
the position of a particle is always determined precisely,
whereas in quantum theory only probabilities of presence can
be computed. The basic object in quantum mechanics is the
wave function, whose modulus square gives the probability
of presence of a particle, and which obeys a wave equation
called the Schroedinger equation. Thus, for a non-relativistic
single particle system, the probability of presence of a particle
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Fig. 1. Many-body interaction from an image processing viewpoint.

with energy E in a potential V (y) is determined by the wave
function ψ(y), where y defines the spatial coordinate. This
wave function belongs to the Hilbert space of L2-integrable
functions and obeys the stationary Schroedinger equation:

− ~2

2m
∇2

yψ(y) = −V (y)ψ(y) + Eψ(y), (1)

with m the mass of the quantum particle, ~ the Planck
constant and ∇y the gradient operator. In operator notation,
(1) corresponds to Hψ(y) = Eψ(y) with the Hamiltonian
operator H = −(~2/2m)∇2

y + V (y). The function |ψ(y)|2
gives the probability of finding the particle at some point.

For imaging applications, this Hamiltonian operator H has
been discretized and implemented as a tool for constructing
an adaptive basis as proposed in [14], [15]. This discretized
Hamiltonian operator reads as:

H[i, j] =


x[i] + 4 ~2

2m for i = j,

− ~2

2m for i = j ± 1,

− ~2

2m for i = j ± n,
0 otherwise.

(2)

where x ∈ IRn2

is an image (i.e., V = x), andH[i, j] and x[i]
represent respectively the (i, j)-th component of the Hamilto-
nian operator and the i-th component of the vectorized image
x in the lexicographical order. Note that zero-padding is used
to handle the boundary conditions [14]. The corresponding
set of eigenvectors of the Hamiltonian operator (2) represents
an adaptive basis on which the image is decomposed prior to
denoising [14], [15]. This basis corresponds to the stationary
solutions of the Schroedinger equation in a potential given by
the pixel values. These basis vectors are oscillatory functions
with oscillation frequencies depending on the local value of
the potential (i.e., image pixels).

Quantum mechanics can be generalized to more than one
particle. Let us denote by z the number of particles in
a quantum system. As a consequence, a particle-to-particle
interaction takes place inside the system and the Hamiltonian
operator for the many-body system becomes [8]:

H = −
z∑

a=1

~2

2ma
∇2

ya
+

1

2

z∑
a=1

z∑
b=1,b 6=a

Vab, (3)

where Vab is a function of y1, y2, · · · , yz , the positions of the z
particles. The difficulty of solving the many-body problem (3)
comes from the complex nature of Vab, which can be tackled
under some approximations from quantum theory.

We propose to use ideas from this theory to incorporate
similarities between patches in the quantum formalism pro-
ducing the adaptive basis for imaging applications. Therefore,
we divide the image into patches indexed from 1 to z, and
write the Hamiltonian in each patch as

Ha = − ~2

2ma
∇2

ya
+ V (ya)︸ ︷︷ ︸

H0a

+

z∑
b=1,b6=a

Iab︸ ︷︷ ︸
HIa

, a = 1, · · · , z (4)

where, Iab is the interaction between the a-th and b-th patches,
H0a is the Hamiltonian in the a-th patch as a single particle
system (as it appears discretized in (2)), and HIa is the total
interaction between the a-th patch and the other patches in
the system. So the effective potential V effective

a inside the
a-th patch is

V effective
a = V (ya) +

z∑
b=1,b 6=a

Iab = V (ya) +HIa . (5)

The problem of finding the adaptive basis transfers thus into
solving z systems of equations, as follows:

Haψ(ya) = Eaψ(ya), a = 1, 2, · · · , z. (6)

which should be discretized in each patch as in (2).

III. QUANTUM MANY-BODY INTERACTION FROM IMAGE
PROCESSING VIEWPOINT

A. General framework

We propose to relate many-body interaction systems to
image processing under the following principles:
• The image (the pixel values) acts as the potential for a

quantum system.
• For a single-particle system, the probability of presence

of a quantum particle at some point on the potential, i.e.
image, is governed by the wave function ψ(y).

• This wave function ψ(y) is a solution of (1), while the
image acts as the potential V (y).

• This wave function belongs to the set of oscillatory
functions, with local frequencies dependent on the image
pixels values. The oscillation frequency is low for higher
values of the pixels and vice-versa.

• An imaginary quantum particle is associated to every
small patch extracted from an image. Each of these
potential surfaces with a quantum particle behaves as a
single-particle system.

• These single-particle systems are not independent, but
interactions occur between them and the other patches
inside the whole image, similar to what happens in a
quantum many-body system, where each quantum parti-
cle interacts with other quantum particles present in the
system (see Fig. 1).

• These quantum interactions modify the effective potential
of the quantum particle following (5). Indeed, the shape
of the wave function depends on these interactions.



B. Quantum interaction between two image patches

In nature, four fundamental interactions exist: gravitational,
electromagnetic, strong, and weak interactions. Mathemati-
cally, the two interactions which are not short-range corre-
spond to an inverse-square law. Without loss of generality, we
propose to extend this idea to image processing, as follows:
• The interaction between two image patches is inversely

proportional to the square of the physical or Euclidean
distance between the patches, i.e., Iab ∝ 1

D2
ab

, where Iab
and Dab are respectively the interaction and the Euclidean
distance between two patches denoted by A and B.

• The interaction between two image patches is linearly
proportional to the absolute value of the pixel-wise differ-
ence between the patches. This process is defined pixel-
wise, i.e., Iiab ∝ |A

i − Bi|, i = 1, 2, · · · , Pdim, where
superscript i indicates the i-th element and Pdim is the
number of pixels in every image patch.

Hence, in image processing, for an interacting many-patch
system the inverse-square law can be defined as

Iiab = p
|Ai −Bi|
D2

ab

, i = 1, 2, · · · , Pdim, (7)

where p is a proportionality constant, which will ultimately
act as a hyperparameter for our problem.

C. Interpretation of the inverse-square law for image patches

The proposed inverse-square law for a many-patch inter-
action model can be interpreted in the following manners: i)
if pixel values of two patches are very similar then they are
less interactive, ii) if two patches are similar but placed far
from each other in the image then they present small-scale
interaction. In other words, if neighbouring patches are very
different from each other then they exhibit high interactions,
but distant patches have always low interaction in spite of
their possible dissimilarity. The interactions between the target
patch and its neighbouring patches manifest themselves in a
way such that the effective potential is obtained by adding
the initial potential (i.e., the target patch itself) with the
total interaction term, thus incorporating the idea of patch
similarity in the local neighbourhood. Fig. 1 depicts a visual
representation of the proposed methodology relating patch-
wise image processing and quantum many-body interaction.
We note that other laws than the inverse square law can be
used, this amounts to modifying the importance of distant
patches compared to neighbouring ones in the algorithm.

IV. QUANTUM INTERACTIONS IN IMAGE DENOISING

The proposed idea of quantum interactive patches can be
explored, for example, to address an image denoising problem.
In this context, the primary objective is to construct an adaptive
basis for each individual patch, which will be further used in
the decomposition of that patch. These basis vectors for the
k-th patch, are the solutions of (1) with the effective potential
denoted by V effective

k in (5). In other words, these basis
vectors are the eigenvectors of the Hamiltonian matrix (2)
under the effective potential V effective

k , that represents the
sum between the current patch and its interactions with its
neighbouring patches.

These basis vectors are oscillating functions with: i) os-
cillation frequency increasing with energy (i.e., eigenvalue in
(6)), and ii) a given basis vector having low local frequencies
for high values of the effective potential V effective

k and vice-
versa. Patch denoising can be achieved by projecting the noisy
patch onto a d-dimensional subspace corresponding to the so-
lutions of (6) of lowest energies, and reconstruct the denoised
patch using these projection coefficients. Here, d acts as a
threshold. In this way, a lack of similarity between pixels leads
to a stronger denoising, since for the same value of the energy
these regions will have lower frequencies than the ones with
more similarity. Finally combining all the denoised patches,
similar to standard non-local means algorithms, one can obtain
the denoised image. The proposed denoising algorithm is
resumed in Algo. 1.

Algorithm 1: QMPI denoising algorithm

Input: y , Ph, Wh, d, p, ~2
2m

1 Divide the noisy image y into Tpatch small patches of size
(2 ∗ Ph + 1). i.e., Pdim = (2 ∗ Ph + 1)2

2 for w = 1 : Tpatch do
3 Choose one image patch Jw

4 Create a search window of size (2 ∗Wh + 1) centered on Jw

5 Collect all Spatch image patches inside this search window
6 for l = 1 : Spatch do
7 Calculate Euclidean distance Dwl between Jw and J l

patches inside the search window
8 Calculate interaction Iwl between Jw and J l patches

inside the search window as

Ikwl = p
|Jk

w − Jk
l |

D2
wl

, k = 1, · · · , Pdim

9 Calculate total interaction I total
w between the patch Jw and

patches inside the search window by taking the sum over all l
i.e., I totalk

w =
∑Spatch

l=1 Ikwl, k = 1, · · · , Pdim

10 Effective potential for the Jw patch is

V effectivek

w = Jk
w + I totalk

w , k = 1, · · · , Pdim

11 Construct the Hamiltonian matrix Hw using the effective
potential V effective

w

12 Calculate the eigenvalues and eigenvectors of Hw

13 Construct adaptive basis Badaptive
w using the eigenvectors

ψk
w, k = 1, · · · , Pdim

14 Project the noisy patch Jw onto this adaptive basis Badaptive
w

15 Calculate projection coefficients cw in the Pdim-dimensional
space. Note that, Pdim > d

16 Redefine the projection coefficients in the d-dimensional
subspace as cnewk

w = ckw, k = 1, · · · , d
17 Reconstruct the patch by Rw =

∑d
k=1 c

newk

w ψk
w

18 Combine all Tpatch denoised patches Rw , to obtain the full
denoised image x̂
Output: x̂

V. SIMULATION RESULTS

This section provides the numerical experiments conducted
with the proposed adaptive quantum many-patch interaction
(QMPI) method for image denoising. We illustrate the effi-
ciency through three standard images (house, lake and Lena)
corrupted by additive whithe Gaussian noise (AWGN) corre-
sponding to different levels of signal-to-noise-ratio (SNR) (22,
16, 8, and 2 dB).

As explained previously, when applied to image denoising,
the proposed method borrows the main principle of non local
means (NLM) approach. Therefore, comparisons have been
carried out with three NLM-based state-of-the-art methods: i)
principal component analysis (PCA) for NLM image denoising



(a) Clean image (b) Noisy image(16dB) (c) PND(31.32dB/0.828) (d) PGPCA(31.81dB/0.815) (e) PLPCA(31.89dB/0.806) (f) QMPI(32.00dB/0.846)
Fig. 2. Lena image corrupted with 16 dB AWGN. The (PSNR/SSIM) values are noted for all methods. d = 22, p = 0.051, ~2/2m = 1.58 were used in the proposed method.

(a) Clean image (b) Noisy image(8dB) (c) PND(27.35dB/0.751) (d) PGPCA(27.13dB/0.687) (e) PLPCA(27.04dB/0.648) (f) QMPI(27.46dB/0.752)
Fig. 3. House image corrupted with 8 dB AWGN. The (PSNR/SSIM) values are noted for all methods. d = 11, p = 0.085, ~2/2m = 1.53 were used in the proposed method.

(a) Clean image (b) Noisy image(2dB) (c) PND(21.48dB/0.608) (d) PGPCA(20.97dB/0.460) (e) PLPCA(20.57dB/0.406) (f) QMPI(21.59dB/0.621)
Fig. 4. Lake image corrupted with 2 dB AWGN. The (PSNR/SSIM) values are noted for all methods. d = 7, p = 0.29, ~2/2m = 2.3 were used in the proposed method.

TABLE I
QUANTITATIVE RESULTS: PSNR(DB)/SSIM

Sample Methods
PND PGPCA PLPCA QMPI

SNR ≈ 22 dB
house 33.98/0.844 35.16/0.883 35.78/0.888 35.44/0.884
lake 30.94/0.865 32.87/0.911 33.16/0.913 33.16/0.912
lena 33.88/0.864 35.21/0.889 35.52/0.892 35.21/0.893

SNR ≈ 16 dB
house 31.60/0.814 31.73/0.800 31.92/0.791 32.15/0.832
lake 27.20/0.792 28.75/0.808 28.87/0.803 28.85/0.821
lena 31.32/0.828 31.81/0.815 31.89/0.806 32.00/0.846

SNR ≈ 8 dB
house 27.35/0.751 27.13/0.687 27.04/0.648 27.46/0.752
lake 23.97/0.703 24.25/0.652 24.07/0.594 24.19/0.708
lena 28.07/0.771 27.48/0.705 27.28/0.667 27.67/0.775

SNR ≈ 2 dB
house 24.89/0.686 23.14/0.504 22.53/0.437 23.93/0.682
lake 21.48/0.608 20.97/0.460 20.57/0.406 21.59/0.621
lena 25.16/0.701 23.38/0.517 22.75/0.453 24.54/0.710

method called PND in [18], ii) patch-based PCA method for
image denoising referred as PGPCA in [19], and iii) local
patch-based PCA method designed for image denoising by
collecting patches only from the local neighbourhood labeled
as PLPCA in [19]. For all the simulations, the half patch size
Ph and half window size Wh were set to 3 and 10 respectively.
All the other hyperparameters, for all the methods, have been
tuned to provide the best results possible for each experiment.
The resulting peak-signal-to-noise-ratio (PSNR) and structure-
similarity (SSIM) [20] are regrouped in Table I, where best
values are highlighted in bold. Figs. 2-4 illustrate detailed
denoising results by these methods for a visual assessment.

PLPCA and PND provide slightly better PSNR values
respectively for high and low SNR images. However, the
proposed method exhibits better SSIM values within almost

all the experiments, justifying its adaptability for high as well
as for low SNR images.

VI. CONCLUSIONS

This paper introduces an original method for image denois-
ing inspired by the quantum many-body interactive theory.
More precisely, an adaptive basis has been constructed using
the concept of quantum many-body interaction, which can
be used as a filter for denoising the image. The quantum
interactions between image patches reflect the local similarities
between neighbouring patches of an image. We have pre-
sented preliminary results showing the interest of this adaptive
method for a denoising application in presence of AWGN.
These preliminary results show that this new method gives re-
sults slightly better than standard well-established procedures.
A further interest of the method is that it could be applied
to any type of noise beyond AWGN without modification.
In particular, a perspective of this work could be to apply
this method to image-dependent noise models such as Poisson
noise [21], for which quantum-based methods are well-adapted
[14]. Another interesting point is that as the denoising is done
at the level of individual patches, the computational time is
in general much smaller by at least an order of magnitude
for large images than in the other quantum-based method of
[14], and becomes comparable to the one of standard NLM
methods. In addition, another interesting perspective is to
extend this idea of quantum interactions for collaborative patch
denoising, as originally proposed in [7]. Finally, other image
restoration applications (e.g., deconvolution) could also take
benefit of quantum interactions through, for instance, plug-
and-play algorithms [22].
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