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ABSTRACT

Skeleton-based two-person interaction recognition has been gain-
ing increasing attention as advancements are made in pose estima-
tion and graph convolutional networks. Although the accuracy has
been gradually improving, the increasing computational complexity
makes it more impractical for a real-world environment. There is still
room for accuracy improvement as the conventional methods do not
fully represent the relationship between inter-body joints. In this pa-
per, we propose a lightweight model for accurately recognizing two-
person interactions. In addition to the architecture, which incorpo-
rates middle fusion, we introduce a factorized convolution technique
to reduce the weight parameters of the model. We also introduce a
network stream that accounts for relative distance changes between
inter-body joints to improve accuracy. Experiments using two large-
scale datasets, NTU RGB+D 60 and 120, show that our method si-
multaneously achieved the highest accuracy and relatively low com-
putational complexity compared with the conventional methods.

Index Terms— skeleton-based action recognition, graph convo-
lutional network, two-person interaction recognition

1. INTRODUCTION

Human action recognition has been widely applied to many
tasks in video understanding such as video surveillance, manufactur-
ing, healthcare services, and human-computer interaction [1, 2, 3].
In particular, skeleton-based action recognition has been gaining
increasing attention as the precision of human pose estimation
has greatly improved [4, 5]. Compared with approaches utilizing
RGB images directly for action recognition, the skeleton-based ap-
proaches are more robust against changes in brightness, appearance,
and interference from various background noise.

Recurrent neural network (RNN) and convolutional neural net-
work (CNN) have often been utilized to recognize actions using
skeleton data [6, 7, 8]. However, it is difficult for most of the models
to recognize actions accurately due to the lack of the consideration of
physical connections between the joints in the human body. A graph
convolutional network (GCN) [9] was introduced to the field of ac-
tion recognition as a spatial-temporal GCN (ST-GCN) [10], which
was able to recognize actions more accurately by taking into account
the structure of the body. GCN-based methods have been explored
over the past few years, and many extended methods based on ST-
GCN have been proposed to date [11, 12, 13, 14].
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(a) Talking (b) Giving object
Fig. 1: Examples of human interaction and their skeletons. Images
were generated from MMAct dataset [15].

Two-person interaction recognition, which involves actions such
as talking, hugging, and giving an object, as shown in Fig. 1, is
regarded as a more complex and challenging task than recogniz-
ing actions performed by an individual [3, 16]. This is because
the relationship between two people needs to be represented for ac-
curate interaction recognition. As with individual action recogni-
tion, the GCN-based methods [17, 18, 19] are typically more accu-
rate than the RNN or CNN-based methods [20, 21, 22] because they
have been designed to represent relationship between two bodies
more accurately.

However, the conventional methods can still be improved in two
aspects: computational complexity and recognition accuracy. Al-
though the accuracy is gradually improving with advancements in
the GCN-based methods, the number of parameters has increased in
most models. For example, MS-AAGCN [12] and MAGCN-IIG [17]
perform a heavy late fusion of scores calculated from four and eight
network streams, respectively, to attain high accuracy. It is more dif-
ficult to apply a model with a high computational cost in the real
world because of its lower inference speed and need for larger com-
putational resources. Thus, it is necessary to design a lightweight
architecture and introduce an effective computational method that
does not degrade the accuracy. The conventional methods do not
consider the relationship between inter-body joints, which hinders
their accuracy. Since the methods do not sufficiently represent ex-
plicit inter-body relationship as inputs to a model, it is still difficult
to distinguish two-person interactions.

To address the above problems, we aim to design an accurate
model with fewer parameters. Our model aggregates several streams
as a few sets of branches to reduce the weight parameters. The ag-
gregated branches are fused in a stream in the form of middle fusion.
Additionally, to improve recognition accuracy, we propose a feature
to capture inter-body relationships more accurately. Our model ac-
counts for the relative distance changes in inter-body joints using
the novel features. The contributions of this paper are summarized
as follows.

• The model complexity is greatly reduced by aggregating
branches on the basis of input shape and graph type prede-
fined for GCN.

• Recognition accuracy is improved by combining an inter-
body graph-based stream capturing the change of relative
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Fig. 2: Overall architecture of 3s-EGCN-IIG (B0). The input shape to streams consists of six variables, N, I, C, T, V,M , which respectively
denote batch size, number of branches, number of channels, temporal length, number of joints contained in the graph, and number of graphs
used in the stream. Cout and Cd denote the number of output channels in each block and interaction classes. Note that the predefined graphs
in this figure do not represent the actual connection, and the batch normalization and Swish function following each layer are omitted.

distances with representative joints of the other person.

• Experiments using two large-scale human interaction datasets
show that our method achieved the highest accuracy and low
complexity compared with the state-of-the-art methods.

2. PROPOSED METHOD
To make the model lighter while improving the accuracy, our pro-
posed method, three-stream efficient GCN using inter- and intra-
body graphs (3s-EGCN-IIG), introduces three techniques for reduc-
ing computational complexity in 2.1 and two techniques for improv-
ing accuracy in 2.2. The convolution and attention mechanism used
in the method will be described in 2.3.
2.1. Techniques for Reducing Computational Complexity
Several representative and effective techniques to reduce weight pa-
rameters have been introduced in EfficientGCN [23] and other stud-
ies on individual action recognition task and object detection task.
The proposed method utilizes three techniques: (1) the aggregation
of branches, (2) factorized convolution, and (3) the model scaling
strategy.
2.1.1. Aggregation of Branches
The overall architecture of 3s-EGCN-IIG is shown in Fig. 2. It con-
sists of three streams, the intra-body stream, the 1st inter-body stream
and the 2nd inter-body stream. Each stream has one or more branches
to process joint coordinates (Jx), their velocity (Vx), or vectors be-
tween adjacent joints on the graph used in the stream (Bx). Most
of the conventional multi-stream models fuse several scores, which
are outputs of streams, in the form of late fusion, but it results in
many redundant parameters. In contrast, our method uses a middle
fusion approach [11] to make the model lighter. As shown in Fig. 2,
six branches are aggregated into three streams by the same input
shape and graph type (e.g., intra-body graph and inter-body graph
described in 2.2.1). The branches are fused in the middle of each
stream. The final score is calculated as the average of the probability
obtained from the three streams.
2.1.2. Factorized Convolution
To further reduce the number of weight parameters, the convolutions
are factorized into several steps. An effective factorized convolution
technique was originally introduced in MobileNetV2 [24] for object
detection. The technique largely reduces parameters by factorizing
a convolution into two pointwise convolutions and one depthwise
convolution. The kernel size and stride settings are described in 2.3.

2.1.3. Model Scaling Strategy
Several studies have investigated scaling strategies that efficiently
increase the width and depth of the model. An innovative strategy

was proposed in EfficientNet [25] and applied to EfficientGCN. The
width and depth multipliers are αφ and βφ, respectively, under the
constraint of α2β ' 2 (α, β ≥ 1), where φ is a compound coeffi-
cient. The scaling strategy and its settings used in our method are set
as α = 1.2 and β = 1.35 in accordance with [23]. Our models are
named 3s-EGCN-IIG (Bφ) depending on φ.

2.2. Techniques for Improving Accuracy
We introduce the following techniques for improving accuracy: (1)
the collaborative use of the inter-body and intra-body graphs, and
(2) an inter-body stream, which captures relative distances with the
representative joints of the other person.

2.2.1. Intra-body Graph and Inter-body Graph
Graphs that represent physical connections of the body must be pre-
defined for graph convolution. In this method, we utilize two graphs,
the intra-body graph and the inter-body graph. The intra-body graph
was originally introduced in ST-GCN [10]. In their method, an indi-
vidual body structure is regarded as a graph, and then graph convo-
lution is performed. Since the intra-body graph is designed to focus
only on each person’s body, it is not appropriate to utilize it in the
same way for a human interaction recognition task.

Consequently, a distinctive graph representation called the inter-
body graph was proposed to capture the relationship between the
joints of different bodies by means of graph convolutions [17]. The
inter-body graph was defined by connecting the same kinds of joints
between two bodies in addition to their intra-body connections as
shown in Fig. 3 (a). The method collaboratively using the inter-body
graph and the intra-body graph improved interaction recognition ac-
curacy. However, it is still difficult to sufficiently capture relation-
ship between two bodies because the original inter-body graph only
connects joints on the same side such as between left side of one
person and the left side of the other person. For instance, when pass-
ing an object, the opposite hands of two bodies may be used, e.g.,
one person’s right hand and the other person’s left hand. If the graph
connects only the same side, the joints on the opposite side are far
apart on the graph and it may not properly take into account the im-
portant relationship between distant joints in two bodies. Thus, we
selected six representative joints in the human body (head, torso, and
distal portion of the extremities, as shown in Fig. 3 (b)), and define
all of their combinations as virtual edges. In the example above, the
novel inter-body graph takes into account the variety of which hand
an object is given to, which should improve the accuracy.

2.2.2. Inputs into Branches
The intra-body stream consists of three branches, J1, V1, and B1,
and utilizes the intra-body graph as its predefined graph. The 1st



Person A Person BPerson A Person B

(a) Inter-body graph in [19] (b) Proposed inter-body graph

Fig. 3: Illustration of joint connection on inter-body graph. Note that
this figure shows only connections between a Person A’s hand and
Person B’s corresponding joints. Relative distance features are also
calculated using the six joints shown in (b).

inter-body stream has J2 and V2 branches, which process joint coor-
dinates and their velocity, respectively, using the inter-body graph.
In contrast, the 2nd inter-body stream only has a B2 branch and pro-
cesses relative distances between joints of different bodies using the
inter-body graph as well.

Take 3D skeleton data with x, y, and z-coordinates as an
example. Given the joint vp,i,t = {xp,i,t, yp,i,t,, zp,i,t}, where
p ∈ {p1, p2} denotes a person index, i denotes a joint index, and t
denotes a frame number, features input for the J1 and J2 branches
are f (J·)

p,i,t = vp,i,t. The features are transformed into the input shape
as shown in Fig. 2. Meanwhile, features input for the other branches
are calculated as

f
(V·)
p,i,t = vp,i,t − vp,i,t−1, (1)

f
(B1)
p,ij,t = vp,i,t − vp,j,t, j ∈ S (intra)

i , (2)

f
(B2)
ij,t = {‖vp,i,t − vp′,jk,t‖2}k=1,··· ,6, jk ∈ S (inter)

i , (3)

where S(·)
i is defined as a joint set connected to the i-th joint on

the graph. S (intra)
i includes only one adjacent joint, whereas S (inter)

i

includes six representative joints as with the definition of the inter-
body graph as shown in Fig. 3 (b). In Eq. (3), p′ is the person with
whom p interacts. Particularly in the B2 branch, relative distance
features are introduced by calculating distances between a person’s
i-th joint and the other person’s six representative joints. The input
into the B2 branch is given as 6-channel data by calculating the L2
norm and concatenating them. Since the B2 branch directly calcu-
lates relative distance features with all of the representative joints of
the other person, it should improve accuracy for two-person interac-
tion recognition.

2.3. Convolution and Attention Mechanism
The principal layers used in 3s-EGCN-IIG are adaptive graph con-
volution (AGC), temporal graph convolution (TGC), and attention
(Att) as shown in Fig. 2. The details of these layers will be described
in this order. Given f in(vj) as the input feature vector on the j-th
joint vj and Si as a set of adjacent joints for the i-th joint vi, the
graph convolution operation on joint vi is written as

f out(vi) =
∑
vj∈Si

1

Zij
f in(vj) · w(li(vj)). (4)

A spatial partitioning strategy for distinguishing node characteristics
is set in the same manner as that of the spatial configuration parti-
tioning [10, 13]; that is, the convolution kernel size is set to 3 and
Si is divided into three groups according to a distance between the
root node and the center of gravity. li(vj) denotes the label map
at joint vj and is determined by the partitioning strategy. w(·) de-
notes the function for obtaining the weight on the basis of the kernel
index. The normalizing term Zij denotes the cardinality of the sub-
sets to balance the contributions of different subsets. Methods to

optimize the topology of the predefined graphs and lower the de-
pendence on the graphs have been proposed [13, 26]. Our method
utilizes AGC [13]. Eq. (4) is transformed as

f s =

Kv∑
k=1

W kf in (Ak + Bk + Ck), (5)

where W k denotes the weight matrix trainable through graph convo-
lution andKv denotes the kernel size of the spatial dimension which
is set to 3 by the spatial partitioning strategy. Ak, Bk, and Ck are
the V × V matrices. Ak is a normalized adjacency matrix that rep-
resents physical connections in the human body, which is calculated

as Ak = Λ
− 1

2
k AkΛ

− 1
2

k using the adjacency matrix Ak. A
ij
k , the

element (i, j) of Ak, is set to 1 or 0 depending on whether a joint
vj is contained in the subset of joint vi. The diagonal elements of
the normalized diagonal matrix Λk are set as Λiik =

∑
j(A

ij
k ) + β,

where β is a small parameter to avoid empty rows. Bk is a trainable
adjacency matrix that also represents the strength of the connections.
Ck is a data-driven matrix based on the similarity of two joints. The
input feature map f in, whose size is (Cin, T, V ), is embedded by
two embedding functions, ζk and ηk. Each function is one 1 × 1
convolutional layer. The output sizes of the functions are (V,C′T )
and (C′T, V ), and then they are multiplied to obtain a V × V sim-
ilarity matrix. The series of calculations to obtain Ck from f in can
be written as Ck = softmax(f>in W

>
ζk
W ηkf in), where W ζk and

W ηk denote the weight of the above embedding functions. The uti-
lization of three matrices makes it possible to be less dependent on
the predefined graphs.

TGC essentially follows AGC as shown in Fig. 2. TGC can ex-
tract temporal context efficiently by using Γ× 1 convolution, where
Γ denotes the temporal kernel size, which is set to 9, to control the
temporal range. The convolution can be formulated as

f t(vt) =
∑

vq∈S(vt)

f s(vq)w(vq),

S(vt) = {vq| |q − t| ≤ bΓ/2c} ,
(6)

where vt and vq denote the joints in the target frame t and its neigh-
bor frame q, respectively. w(vq) denotes the weight for vq and S(vt)
denotes the sampling region of the temporal convolution. As men-
tioned in 2.1.2, to reduce the number of weight parameters, the con-
volution is factorized into three convolution steps: a 1× 1 convolu-
tion from channel size Cin to 2Cin, a 5 × 1 depthwise convolution
with a stride of 2, and a 1 × 1 pointwise convolution from channel
size 2Cin to Cout.

An attention module called ST-JointAtt was also introduced
in [23]. ST-JointAtt was inspired by [27] and designed to distin-
guish the most informative joints in certain frames from the whole
sequence by taking spatial and temporal information into account
concurrently. The formulation is written as

ginner = θ(ps(gin)⊕ pt(gin)) ·W ),

gout = gin � (σ(ginner ·W s) ⊗ σ(ginner ·W t)),
(7)

where gin and gout denote input and output feature maps. ps(·) and
pt(·) represent spatial and temporal average pooling operations, re-
spectively. The symbols ⊕, �, and ⊗ respectively denote the con-
catenation, the channel-wise outer-product, and the element-wise
product. θ(·) and σ(·) respectively denote HardSwith and Sigmoid
activation function. W ∈ RC×

C
4 and W s,W t ∈ R

C
4
×C are train-

able weight matrices. The concatenation of two vectors obtained
from each pooling operation makes it possible to calculate attention
maps using both spatial and temporal information.



Table 1: Comparison of accuracy (%), number of parameters, and FLOPs between proposed method and state-of-the-art methods on 11
interactions in NTU RGB+D 60 and 26 interactions in NTU RGB+D 120. Results that were not provided are marked with “-”.

Methods Conf./Jour. Type NTU RGB+D 60 NTU RGB+D 120 #Param. FLOPs
X-Sub X-View X-Sub X-Set (×M) (× G)

ST-LSTM [8] TPAMI (2017) RNN 83.0 87.3 63.0 66.6 - -
GCA-LSTM [7] CVPR (2017) RNN 85.9 89.0 70.6 73.7 - -
ST-GCN [10] AAAI (2018) GCN 91.0 94.7 82.5 83.6 3.10 16.3
FSNET [6] TPAMI (2019) CNN 74.0 80.5 61.2 69.7 - -
AS-GCN [14] CVPR (2019) GCN 89.3 93.0 82.9 83.7 9.50 26.8
2s-AGCN [13] CVPR (2019) GCN 92.4 95.8 86.1 88.1 6.94 37.3
ST-GCN-PAM [19] ICIP (2020) GCN - - 82.4 88.4 - -
LSTM-IRN [20] TMM (2021) RNN 90.5 93.5 77.7 79.6 - -
2s-DRAGCN [18] Patt. Recog. (2021) GCN 94.7 97.2 90.6 90.4 7.14 -
MAGCN-IIG [17] Access (2021) GCN 94.4 97.5 89.0 93.1 29.6 143
GeomNet [21] ICCV (2021) CNN 93.6 96.3 86.5 87.6 - -
EfficientGCN (B0) [23] TPAMI (2022) GCN 95.0 97.1 89.6 90.8 0.39 2.08
3s-EGCN-IIG (B0) ICIP (2022) *Ours GCN 96.3 98.3 91.9 94.8 0.96 4.65
3s-EGCN-IIG (B4) 96.6 98.7 92.4 95.5 6.01 22.5

3. EXPERIMENTS
3.1. Datasets
We evaluated our proposed method through experiments on two
large-scale human action datasets, NTU RGB+D 60 [28] and NTU
RGB+D 120 [29], which contain 11 and 26 interactions, respec-
tively. These datasets have been widely utilized for evaluating
action recognition methods due to their large data size. Each class
contains approximately 1,000 clips. The skeleton data was obtained
using Kinect v2 sensors and represented by 3D coordinates for 25
joints per person. These datasets include many variations in subjects
and camera set-ups. The original papers recommend two kinds of
validation methods to split the data into a training set and a test set
in terms of subjects and camera set-ups, i.e., cross-subject (X-Sub)
and cross-view (X-View). Note that X-View is called cross-setup
(X-Set) in NTU RGB+D 120.

3.2. Training Details
The training processes for both datasets are the same, as follows.
They included 50 epochs in total. A warmup strategy [30] was ap-
plied over the first 10 epochs to gradually increase the learning rate
from 0.0 to 0.1 for stable training. After the 10th epoch, the learn-
ing rate decays according to a cosine schedule [31]. The stochas-
tic gradient descent with Nesterov Momentum was applied as the
optimization strategy and a hyperparameter was set to 0.9. Cross-
entropy was selected as the loss function and the weight decay was
set to 0.0001. The batch size was set to 32. Since each clip con-
tains multiple frames with different lengths, the length of all clips
was aligned to 150 frames (5.0 seconds at 30 fps) for the input into
the streams. The code was implemented by PyTorch 1.7.0.

3.3. Results and Discussion
We compared our proposed method with the state-of-the-art meth-
ods, the results of which are shown in Table 1. Note that we imple-
mented ST-GCN, 2s-AGCN, and MAGCN-IIG ourselves and eval-
uated their accuracy. The other scores were taken from the original
papers of the respective methods. As shown in the table, our method
showed the highest accuracy in all four validations, even with the
smallest B0 model, achieving an average improvement of 2.3% in
NTU RGB+D 120 compared with the conventional highest perform-
ing model (MAGCN-IIG). It should also be noted that the number
of parameters of the proposed B0 model is still less than 1M. The
middle fusion in each stream achieved high accuracy while reducing
the number of layers efficiently. A middle fusion-based network had
roughly half with the number of parameters of a late fusion-based
network which requires more layers. The factorized convolutions

Table 2: Comparison of accuracy (%), number of parameters, and
GFLOPs with different input streams using the proposed method in
NTU RGB+D 120. All models are based on B0.

Methods X-Sub X-Set #Param. FLOPs
(A) Intra-body stream 89.6 90.8 0.39 M 2.08 G
(B) 1st inter-body stream 89.6 91.5 0.32 M 1.50 G
(C) 2nd inter-body stream 86.7 91.5 0.25 M 1.07 G
(A)+(B) 91.6 93.4 0.71 M 3.58 G
(A)+(C) 90.8 94.0 0.64 M 3.15 G
(B)+(C) 90.3 94.0 0.57 M 2.57 G
(A)+(B)+(C) 91.9 94.8 0.96 M 4.65 G

further reduced the number of parameters by approximately 10%.
Although the B4 model is larger than B0, the accuracy of the B4
model is on average 0.6% higher than that of the B0 model in NTU
RGB+D 120, and the computational complexity is still lower than
that of most of the conventional methods. We measured the infer-
ence speed using 1 NVIDIA GeForce RTX 3090 GPU. The average
inference speed of B0 model was approximately 5 ms per sample.

Ablation studies were also conducted to evaluate the perfor-
mance and effectiveness of each stream and the combined streams.
The comparisons are shown in Table 2. The methods which com-
bined two or more streams yielded higher accuracy than the sin-
gle stream methods. In particular, 3s-EGCN-IIG combining three
streams achieved the highest classification accuracy. This is because
the inter-body streams are largely conducive to more accurate clas-
sification, with an average improvement of 3.2% although the two
streams only have 0.57M parameters. Therefore, it is important to
utilize the inter-body graph and consider the relative distances from
the joints of the other person to express human interaction.

4. CONCLUSION
We have proposed 3s-EGCN-IIG for efficient and accurate human
interaction recognition. The aggregation of branches, factorized con-
volution, and the scaling strategy were utilized to greatly reduce the
computational complexity so that the method can be applied in real-
world environments. Our method utilized both the inter-body graph
and intra-body graph in different streams for accurate human inter-
action recognition. The relative distance features, which are cal-
culated on the basis of distances with the representative joints of
the other person, were used in one of the inter-body streams, which
contributed to improvements in accuracy. Through the experiments
using two large-scale datasets containing a wide variety of human
interactions, we showed that our method successfully reduced the
number of weight parameters while achieving high accuracy.
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