
DOMAIN ADAPTATION FOR UNKNOWN IMAGE DISTORTIONS IN INSTANCE
SEGMENTATION

Maximiliane Gruber, Fabian Brand, Alina Mosebach, Jürgen Seiler, and André Kaup

Multimedia Communications and Signal Processing
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICIP46576.2022.9897339

ABSTRACT
Data-driven techniques for machine vision heavily depend on the
training data to sufficiently resemble the data occurring during test
and application. However, in practice unknown distortion can lead
to a domain gap between training and test data, impeding the perfor-
mance of a machine vision system. With our proposed approach this
domain gap can be closed by unpaired learning of the pristine-to-
distortion mapping function of the unknown distortion. This learned
mapping function may then be used to emulate the unknown dis-
tortion in the training data. Employing a fixed setup, our approach
is independent from prior knowledge of the distortion. Within this
work, we show that we can effectively learn unknown distortions at
arbitrary strengths. When applying our approach to instance seg-
mentation in an autonomous driving scenario, we achieve results
comparable to an oracle with knowledge of the distortion. An av-
erage gain in mean Average Precision (mAP) of up to 0.19 can be
achieved.

Index Terms— Image Distortions, Unpaired Image-to-Image
Translation, Unsupervised Domain Adaptation, Instance Segmenta-
tion, Autonomous Driving

1. INTRODUCTION

Depending on the employed image acquisition setup and environ-
mental conditions, images and videos contain different image dis-
tortions like blur, noise, low contrast, low resolution, coding arti-
facts, or combinations thereof. In previous work, it has been shown
that the performance of Deep Neural Network (DNN)-based tech-
niques for machine vision decreases if the input images or videos
are subject to such distortions. This negative impact has been shown
for image classification [1–5], semantic segmentation [6], object de-
tection [7, 8], instance segmentation [8] and license plate recogni-
tion [9]. A common approach to encounter this decrease in perfor-
mance is to enlarge data sets by data augmentation, i.e., extending
them with modified versions of the original images by applying ex-
pected distortions synthetically [10].

However, not all image and video distortions may be easily mod-
eled and applied to pristine images. For example, translating images
between different camera setups is a more complex problem. There-
fore, first attempts at learning pristine-to-distorted mapping func-
tions have been made [11]. A pristine-to-distorted mapping func-
tion translates images from the source domain X containing pris-
tine, undistorted images to the target domain Y containing distorted
images. Learning mappings between images belonging to different
domains is also termed image-to-image translation.
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(a) Baseline

(b) Our approach

Fig. 1. Visual comparison of instance segmentation results on
Cityscapes image frankfurt_0000000_001236 for test data
subject to an unknown distortion (here: JPEG2000 at a PSNR of
32 dB) with and without our proposed approach for unpaired learn-
ing of unknown distortions.

For paired training of image-to-image translation, images from
domain X and Y related by the true pristine-to-distorted mapping
function C are required. In [12], Isola et al. have proposed the
pix2pix framework for paired image-to-image translation. This
method employs adversarial learning, and is shown to be a flexi-
ble framework able to learn a large variety of mappings between
domains. Paired image-to-image translation is impossible when re-
garding unknown distortions, since access to the true distortion func-
tion C is required to obtain the training data. In [11], Chen et al.
show that their pix2pix-based approach is capable of learning dis-
tortions from paired data. The visual impression is verified by an
evaluation in terms of natural scene statistics. However, the effec-
tiveness of the approach is not investigated with regards to machine
vision tasks. In [13], Zhu et al. extend pix2pix to CycleGAN
by introducing a cycle-consistency loss. This enables the unpaired
learning of mappings between domains in a similar flexible frame-
work. For unpaired image-to-image translation unrelated images
may be taken from domains X and Y enabling the learning of un-
known distortions.

In contrast to utilizing image-to-image translation to align data
of differing domains on a pixel-level, a domain gap may also be
overcome by aligning the training and testing data on feature-level.
However, the advantage of pixel-level approaches is that the align-
ment of data and the method to solve the machine vision task may
be regarded independently. For this reason, we only regard align-
ment on pixel-level, i.e., pixel-level domain adaptation, by means of
image-to-image translation in this work.

In this work, we show that with our approach for unpaired
learning of unknown distortions, blur, white noise, JPEG coding,
JPEG2000 coding, and HEIF coding may be emulated at several
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levels of distortion. We compare the performance of instance seg-
mentation in an autonomous driving scenario when adapting the
model by means of corresponding true and learned pristine-to-
distorted mapping functions. In this context, we also perform an
extensive benchmark of the impact of image distortions on instance
segmentation employing Mask Region-based Convolutional Neural
Network (R-CNN).

A visual impression of the advantage of employing our proposed
unpaired learning of unknown distortions in instance segmentation
is given in Figure 1. In Figure 1, multiple instances in a distorted
image are not recognized by the baseline system trained on pristine
data. By adapting the instance segmentation to the unknown dis-
tortion (here: JPEG 2000 at a PSNR of 32 dB) with our proposed
approach, more instances are recognized.

2. UNSUPERVISED DOMAIN ADAPTATION FOR
UNKNOWN DISTORTIONS

DNNs for instance segmentation in autonomous driving are com-
monly trained on pristine data. However, in practical applications,
the test data is often subject to unknown distortions impeding the
performance of the DNN. We propose to overcome this domain shift
between the source domain X containing pristine, undistorted data
and the target domain Y subject to an unknown distortion by means
of unpaired image-to-image translation. The pristine-to-distorted
mapping function C : X → Y represents the unknown mapping
from the source to the target domain. Learning this mapping func-
tion from unpaired data enables the emulation of the unknown dis-
tortion on the labeled training data. With this unsupervised domain
adaptation, the performance in the target domain may be improved
without access to labeled training data.

2.1. Unpaired Learning of Unknown Distortions

For unpaired learning of the unknown pristine-to-distorted mapping
function C, the image-to-image translation technique CycleGAN
is employed [13]. This unpaired approach consists of a generator
G to translate images from the undistorted to the distorted domain
G : X → Y and a generator F to translate images from the dis-
torted to the undistorted domain F : Y → X . Employing a cycle-
consistency loss, the difference between input images x ∈ X and
y ∈ Y and their respective translations employing both generators
x̂ = F (G(x)) and ŷ = G(F (y)) is minimized. Furthermore, dis-
criminators DX and DY exist to distinguish between true and gen-
erated samples of domains X and Y , respectively. In our approach,
the learned mapping function C̃ for the unknown distortion is given
by generator G. The optimal generator G∗ is obtained by solving

G∗ = argminG,F,DX ,DY
L(G,F,DX , DY ). (1)

For further details on CycleGAN and the full objective function
L(G,F,DX , DY ), we refer the reader to the original publication
and the reference implementation provided by the authors [13].

With the goal of obtaining one set of parameters to learn differ-
ent unknown distortions at arbitrary strengths, multiple preliminary
experiments were conducted. We empirically found the setup pre-
sented in [13] for the translation between paintings and photos to
perform best over a broad range of distortions at different strengths.
These training parameters entail a cycle-consistency loss weighing
factor of 10, an identity mapping loss weighing factor of 0.5 and
a batch size of 1. The models are trained from scratch, employ-
ing a constant learning rate of 0.0002 during the first 100 epochs,

X

C(·)

Y

C(·)

C̃(·)

Training data

Test data Instance
segmentation Prediction

Fig. 2. Experimental setup of unsupervised domain adaptation for
unknown distortions. Mapping function C represents the unknown
mapping from undistorted source domain X to distorted target do-
main Y . Mapping function C̃ is learned by means of unpaired image-
to-image translation.

and linearly decaying it to zero over the following 100 epochs. The
generator networks G and F consist of 9 residual blocks. Discrimi-
nators DX and DY are 70× 70 PatchGANs [13]. The training data
is randomly cropped to a size of 256× 256.

An advantage of our proposed approach is the independence
from prior knowledge of the unknown distortions by employing a
single set of parameters for a wide range of distortions at arbitrary
levels. The flexibility to adapt to a wide range of distortions at var-
ious levels is of particular importance, since commonly images and
videos are not only subject to a single distortion, but combinations
thereof.

Another benefit of our approach is the unnecessity of additional
data sets. We employ the instance segmentation test images from
the target domain Y and the instance segmentation training images
from the undistorted source domain X to train the image-to-image
translation in an unpaired manner. The learned mapping C̃ is then
employed to emulate the unknown distortion on the instance seg-
mentation training data.

2.2. Adapting Instance Segmentation to Unknown Distortions

In [8], Fischer et al. show that robustness against distortion may be
obtained either by including the degraded images into the training
data, or by fine-tuning a network trained on pristine data on the re-
spective distortion. Therefore, we choose the same pre-trained Mask
R-CNN [14] provided in [15] and perform a fine-tuning on training
data distorted by means of the learned pristine-to-distortion mapping
function C̃.

The Detectron2 framework [15] is employed to fine-tune
Mask R-CNN [14] for instance segmentation. The employed pre-
trained model has a ResNet50 [16] backbone, and is pre-trained on
COCO [17] and pristine Cityscapes [18]. With a batch size of 4, the
fine-tuning is performed for a maximum of 24 000 iterations, to im-
prove the DNN’s performance on the target domain. Starting with
a learning rate of 0.01, the learning rate is decreased after 18 000
iterations to 0.001.

3. EXPERIMENTAL SETUP

The experimental setup to evaluate our proposed approach is de-
picted in Figure 2. We employ data from the undistorted source
domain X as training data. We regard three different scenarios il-
lustrated by the three different branches:

Baseline In the top branch, we directly employ data from the undis-
torted source domain X for training. Hence, the instance seg-
mentation system is not adapted to the distorted domain Y and
the distortion remains unknown.
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Fig. 3. Results of instance segmentation measured as mean Average Precision (mAP) over distortion level for various distortion types.

Oracle-based approach In the middle branch, the true pristine-to-
distorted mapping function C is employed to adapt the instance
segmentation. This represents the best-case scenario. How-
ever, since our proposed approach is meant to adapt instance
segmentation to unknown distortions of arbitrary strength, this
oracle-based approach is unattainable in practice.

Our proposed approach As detailed in Section 2.1, we learn a
mapping function C̃ from pristine images to an unknown dis-
tortion by means of unpaired image-to-image translation. We
emulate the unknown distortion on the training data employing
C̃ to adapt instance segmentation to the unknown distortion.

The evaluation is carried out employing test data from the dis-
torted domain Y . This distorted test data is obtained by applying the
true distortion mapping function C to the Cityscapes validation split.
The performance of Mask R-CNN is evaluated in terms of mAP and
reported over the level of distortion. The mAP is calculated as de-
scribed in [18], by first calculating the Average Precision (AP) for
each class for various overlaps, and then taking the mean over all
classes.

We employ the Cityscapes dataset introduced in [18]. We choose
this data set, since it contains relatively little distortions in compar-
ison to other data sets for autonomous driving. For each distortion
employed in this work, we degrade all splits of the Cityscapes data
set in order to train the unpaired image-to-image translation as well
as the instance segmentation.

To show the flexibility of our proposed approach, we choose
a diverse set of distortions at different levels of distortion, namely
blur, additive white Gaussian noise (AWGN) and different image
compression techniques. We show the applicability of our approach
for compression with a fixed block size (JPEG), with adaptive block-
size (HEIF), and wavelet-based coding (JPEG2000).

The distortion level of blur is denoted by standard deviation
σblur of the two-dimensional symmetric Gaussian kernel, with
which the pristine image is convolved. For white noise, random
values are drawn independently for each pixel from a zero-mean
Gaussian distribution with standard deviation σAWGN and added to
the undistorted image. For JPEG and JPEG2000 en- and decoding
methods provided by ImageMagick [19] are employed. The JPEG
quality is varied by means of Compression Level (CL), with zero
leading to the strongest and 100 to the lowest level of distortion. The
quality of JPEG2000 is controlled by the Peak Signal-to-Noise Ra-
tio (PSNR) in dB between pristine and coded image. HEIF en- and
decoding is performed employing libheif [20]. The distortion
level is controlled by the Quantization Parameter (QP) ranging from
zero to 51. With a QP of 51 the strongest distortions are introduced.

Distortion Oracle Our approach Difference

Blur 0.15 0.14 −0.01
White noise 0.20 0.19 −0.01
JPEG2000 0.10 0.06 −0.04

JPEG 0.10 0.05 −0.05
HEIF 0.07 0.04 −0.03

Table 1. Average mean Average Precision (mAP) gains over base-
line model without adaption to distortions, when employing an or-
acle and our proposed approach. The last column shows the differ-
ence between our proposed approach and the oracle-based approach.

4. RESULTS AND DISCUSSION

The experimental results in terms of mAP over the level of distor-
tion are shown in Figure 3. The distortion levels are sorted so that
the leftmost value corresponds to the lowest and the rightmost value
to the highest distortion. The blue dashed line shows the mAP ob-
tained when testing the pre-trained baseline model on pristine data.
With this setup the best results are obtained reaching an mAP of
0.35. For all solid plots, the test data is distorted with the respec-
tive true distortion function C. The blue solid line depicts the results
for the baseline scenario without fine-tuning of the model. For all
types of distortion the mAP decreases with the increasing level of
distortion. The red solid line depicts the results of the oracle with
knowledge of the true distortion function C. Here each distortion at
each strength is regarded as its own target domain, i.e., for each red
point a specific instance segmentation model was adapted. For very
low distortion like a blur of σblur = 1, the difference between the
pre-trained baseline approach and the adapted oracle-based approach
is very small. For stronger degradations, the mAP is increased by the
specialization on the regarded distortion.

The green solid line depicts the results for our proposed un-
paired learning of unknown distortions. For all distortions at all
distortion levels, the mAP is increased in comparison to the base-
line, i.e., the case without adaptation to the unknown distortion. For
blur and white noise, mAPs very close to the oracle-based approach
are reached. For the different image coding techniques, the obtained
mAP is also quite close to the mAP achieved by the oracle. For
stronger distortions, the gap between mAPs obtained by the true and
the learned distortion function becomes larger.

In Table 1, the gains in mAP over the baseline are averaged over
the level of distortion. It can be seen that we achieve results compa-
rable to the oracle-based approach. The largest average gain in mAP
of 0.19 is observed for white noise. The average gain in mAP for
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Fig. 4. Visual examples of applying true (top row) and learned (bottom row) distortion mapping function to Cityscapes image
bremen_000117_000019 for various distortion types. (Best to be viewed enlarged on a monitor.)
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Fig. 5. Results of instance segmentation measured as mean Aver-
age Precision (mAP) over Peak Signal-to-Noise Ratio (PSNR) for
various distortion types. Dashed plots denote results obtained with
the baseline, solid lines denote results obtained with our proposed
approach.

white noise and blur achieved with our proposed approach is only
0.01 lower than the oracle-based approach. For image compression
with our proposed approach average gains ranging from 0.04 to 0.06
are achieved. The gains obtained with the oracle are between 0.03
to 0.05 higher.

Visual examples for one distortion level of each distortion type
are shown in Figure 4. In Figure 4(a), a pristine example image
is depicted. In Figure 4(b)-(f), this image is distorted by the true
pristine-to-distorted mapping C in the top row, and the the learned
mapping C̃ in the bottom row. For blur and white noise it can be
seen that the learned distortion is visually very similar to the true
distortion. In the case of the different image compression techniques,
the learned and true distortions are also visually close. However, not
all types of occurring artifacts can be reproduced yet.

For a better comparison in terms of objective image quality, the
results of the instance segmentation measured as mAP, are shown
as a function of PSNR in Figure 5. Therefore, the mean PSNR
was computed for each distortion level of each distortion type. The
dashed plots denote the results obtained with the baseline, the solid
plots represent the results of our proposed approach. In the base-
line approach, for the same distortion level in terms of PSNR, the
highest mAPs are observed for white noise, followed by blur. All
regarded image compression techniques have a similar influence, re-
sulting in a lower mAP. Our proposed unpaired learning of unknown
distortions improves the instance segmentation results for all PSNR

levels. The sensitivity towards the different distortion types remains
the same.

It can be seen, that the employed instance segmentation model
exhibits a strong sensitivity towards various image distortion. The
instance segmentation seems to be very sensitive towards image
compression, while exhibiting more resiliency toward blur and
white noise. As expected, for the unknown distortion, i.e., model
trained on undistorted source domain X and tested on distorted
target domain Y , the lowest mAPs are achieved. With the regarded
oracle-based approach, i.e., model specialized and tested on dis-
torted target domain Y , the highest mAPs are obtained. With our
proposed unpaired learning of unkown distortions results compa-
rable to the oracle-based approach are obtained. Moreover, we
can achieve mAPs for blur and white noise closely matching the
oracle-based approach. For the different image coding techniques,
especially at a higher level of distortion there is still room for im-
provement. A potential reason for the larger gap in image coding
techniques is the inability of the employed generator network to
reproduce block artifacts.

5. CONCLUSION

In this work we propose to learn the mapping from pristine data to
data subject to an unknown distortion. We show that this mapping
may be learned with a fixed setup for a wide range of distortions
and for a diverse set of distortion levels. This learned mapping is
then employed to emulate unknown distortions on pristine, labeled
training data for instance segmentation. By fine-tuning instance seg-
mentation with this training data, we achieve results that are com-
parable to an oracle with knowledge of the true pristine-to-distorted
mapping. The largest average gain in mAP of 0.19 is obtained for
white noise. For image coding and blur we achieve average gains in
mAP between 0.04 and 0.14. Our approach has the advantage that
neither prior knowledge of the distortion nor additional data sets are
required. Furthermore, we performed an extensive benchmark on
the influence of image distortions on instance segmentation.

In future work, the difference between specialization of DNNs
to certain degradations of certain strengths could be compared to a
model trained on various degradations. Furthermore, an evaluation
in terms of visual closeness of the emulated and true distortions may
be conducted. Applying our proposed approach to more complex
combinations of distortions could be performed to investigate the
generalization capabilities of our approach.
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