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ABSTRACT

This paper presents a novel image inpainting framework
for face mask removal. Although current methods have
demonstrated their impressive ability in recovering dam-
aged face images, they suffer from two main problems:
the dependence on manually labeled missing regions and
the deterministic result corresponding to each input. The
proposed approach tackles these problems by integrating a
multi-task 3D face reconstruction module with a face in-
painting module. Given a masked face image, the former
predicts a 3DMM-based reconstructed face together with
a binary occlusion map, providing dense geometrical and
textural priors that greatly facilitate the inpainting task of
the latter. By gradually controlling the 3D shape parame-
ters, our method generates high-quality dynamic inpainting
results with different expressions and mouth movements.
Qualitative and quantitative experiments verify the effec-
tiveness of the proposed method. Our Code: https:
//github.com/face3d0725/face_de_mask

Index Terms— mask removal, face inpainting, 3DMM

1. INTRODUCTION

Wearing face masks in public has become an essential hy-
giene practice to control the spread of COVID-19, posing new
challenges for face-related computer vision tasks. Computers
need to accomplish face recognition, expression recognition,
landmark detection, etc., using minimal exposed facial tex-
tures. Although many recent studies focus on the masked sce-
nario, most are task-specific and not universally applicable.
In comparison, directly restoring mask-occluded face texture
promises to be a one-stop solution to the problem. To this end,
we need to tackle two sub-tasks: 1) detecting the occluded
region and 2) recovering the face textures, corresponding to
image segmentation and face image inpainting, respectively.

Thanks to the revolutionary emergence of deep learning,
data-driven approaches have dominated computer vision with
great success. However, this also leads to the reliance on high-
quality training data. Regarding mask segmentation specifi-
cally, large, diverse, and manually annotated mask datasets
are in strong demand due to the targets’ varying shapes, ori-
entations, and textures. Some methods synthesize training
data by overlaying masks on ordinary face images, which is

a cheap interim solution before a large paired masked face
dataset becomes available.

Early image inpainting methods fill the holes by iter-
atively searching nearest neighbor textures from the back-
ground [1]. However, such copy-and-paste methods only
consider internal information within the image, making them
only capable of recovering tiny, smooth textures and not deal-
ing with semantic-level deficiencies such as masked noses
and mouths. On the other hand, data-driven approaches learn
the data distribution from large datasets, allowing them to re-
store the semantic-level image patterns. Context Encoder [2]
pioneered the adversarial training paradigm. [3, 4] exploits
feature masking to deal with free-form missing regions. Also,
different attention modules [5, 6] have been proposed to break
through the limited receptive field of the convolution kernel
and thus explicitly model long-distance dependencies. De-
spite the improved inpainting quality, most methods produce
only deterministic results, ignoring multiple fill options.

This paper proposes a novel 3D reconstruction-guided
method for removing masks from face images in the wild.
The model comprises a multi-task mask-robust 3D face re-
construction module and a face inpainting module. The
former predicts both the 3D Morphable Model (3DMM) [7]
parameters and the binary occlusion map of the masked face,
and the latter recovers the missing facial texture conditioned
by the rendered 3D prior. By changing the 3DMM parame-
ters, we can control the shape and expression of the recovered
face both accurately and smoothly.

2. RELATED WORKS

The closest work to ours is that of Din et al. [8], where we
both focus on the problem of face mask removal and divide it
into mask segmentation and face painting. Our method sur-
passes theirs in two aspects: 1) We labeled more mask tem-
plates (900 vs. 50) to train the mask segmentation task. 2)
Our inpainting results are diverse and highly controllable.

Some variational autoencoder-based methods can also
produce non-deterministic outputs [9, 6] by sampling latent
codes from predicted distributions. Although the stochastic
nature of the VAE brings about varied results, diversity is
never guaranteed: the targets are still fixed, leading to 1)
sharp latent distributions and 2) robust decoder to the latent
codes’ variations, degrading the framework into a common
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Fig. 1. We first synthesize the training data Im by adding masks to ordinary face images I . Next, we use a multi-task model
N3D to predict the mask silhouette m and the 3D reconstructed face I3D of the input. Finally, we synthesize the non-occluded
face Î based on the noised face In, m and I3D. A VGG-shaped discriminator ND is leveraged to distinguish Î from the real.

autoencoder. Furthermore, the diversity introduced by ran-
dom sampling is neither controllable nor smooth. Although
some other methods conditioned on sketches [10], facial
landmarks [11], or segmentation maps [12] do yield editable
results, the sparsity and instability of such conditions lead to
poor controlling accuracy.

3. APPROACH

Since collecting large amounts of paired with/without the
mask face images is infeasible, we train on synthetic data
pairs generated by overlaying masks on ordinary face images,
as shown on the leftmost of Figure 1. The proposed model
is composed of a multi-task 3D face reconstruction-mask
segmentation module N3D and a face inpainting module NG,
corresponding to the left and right halves of Figure 1, respec-
tively. Given a masked face image Im, N3D predicts its 1)
corresponding 3DMM parameters c, from which a 3D face
I3D could be reconstructed and rendered, and 2) the occlu-
sion mask m, indicating the mask silhouette. We then replace
the mask texture with random noises based on m and get In.
Finally, NG predicts the mask-free face Î conditioned by In,
m, and I3D. We also employ a discriminator ND to increase
the realism of the generated images. The Following presents
each module in detail.

3.1. Segmentation-Reconstruction Module

N3D takes ResNet50 [13] as its backbone and fulfills 3D face
reconstruction and mask segmentation. Intuitively, the neural
network captures global shape patterns in the bottom layers
and detailed texture patterns in the top layers, while the masks
usually occupy a large area of the face with relatively sim-
ple textures, so we perform mask segmentation using features
from the first three residual blocks. The segmentation task is
solely guided by the Binary Cross-Entropy (BCE) loss:

Lbce = −
1

WH

∑
(m�log(m̂)+(1−m)�log(1−m̂)), (1)

where m̂ and m denote the predicted and the ground truth bi-
nary mask, W and H denote the spatial dimension of the bi-
nary map. The “online hard example mining” (OHEM) tech-
nique is also utilized to make the training more efficient.

To concentrate the model on visible textures while pre-
dicting the 3DMM parameters, we also integrate a gated con-
volution [4] layer before the last residual block of ResNet50,
predicting a dynamic feature mask for each channel. The 3D
reconstruction branch outputs a vector ĉ ∈ R237, containing
the face’s shape, pose, texture, and illumination parameters.
To accelerate the training, we use 3D coefficients predicted
from the original unmasked face images by the pre-trained
model of [14] as the ground truth of c. Following losses
jointly guide the 3D reconstruction task:

The most direct term is the coefficient loss.

Lcoef =
1

N
‖ĉ− c‖1, (2)

where ĉ and c are the predicted and the ground truth 3D coef-
ficients, N denote the dimension of c.

However, the coefficient level loss treats the discrepancy
in all dimensions equally, which is unreasonable, as some di-
mensions affect the reconstruction results much more than
others (e.g., poses v.s. illuminations). Hence we introduce the
photo loss, which constraints the training at the image level.

Lphoto =
1∑
M
‖I3D �M − I �M‖2, (3)

where I3D denotes the rendered reconstruction result, I de-
notes the original face image, and M denotes the binary face
region map (provided by the training dataset).

As with most face reconstruction methods, we apply iden-
tity loss for better capturing the face identity.

Lid = 1− F(I3D)F(I)
‖F(I3D)‖‖F(I)‖

, (4)

where F(·) denotes the feature extraction operation via a pre-
trained Arcface[15] model.



Finally, we leverage landmark loss as [14] to loosely con-
strain the shape and pose of the reconstructed face.

Llm =
1

npt

npt∑
i=1

ωi‖q̂i − qi‖2, (5)

where q̂i and qi represent the 68 (npt = 68) facial land-
marks indexed from the predicted and the ground truth (re-
constructed from c in Equation 2) 3D faces, respectively. ωi

is the weight corresponding to the ith landmark, set to 20 for
the nose and inner-mouth points and 1 for others.

The overall loss function is formulated as:

L3D = Lbce + Lcoef + Lphoto + λidLid + λlmLlm, (6)

where λid = 0.1 and λlm = 0.001.

3.2. Inpainting Module

The inpainting module consists of a generator NG with
stacked residual blocks and a discriminator ND with the
VGG structure. As shown in Figure 1, NG concatenates the
mask parsing map m, the 3DMM-based face I3D, and the
noised image In as input and outputs Î , which recovers the
original mask-free face image I . Further, Î and I are fed into
ND to obtain their probabilities of being real data. We utilize
the following losses to train the model:
Pixel-wise loss,

Lpix =
1

HWC
‖Î − I‖1, (7)

where H , W , C are the height, width and channels of I .
Identity loss Lid, formulated the same as Equation 4, except
replacing I3D therein with Î .
Total variation loss [16],

Ltv =
1

HWC
(‖∇xÎ‖2 + ‖∇y Î‖2), (8)

where∇ denotes the directional gradient.
Adversarial loss,

Ladv = −EÎ [logD(Îi)], (9)

where D(·) denotes the mapping function of ND; the larger
its value, the more its input tends to be real.
The full loss of NG is summarized as:

LG = λpixLpix + λidLid + λtvLtv + λadvLadv, (10)

where λpix = 10, λid = 0.1, λtv = 0.1, λadv = 0.01.
Discriminator loss, the loss of ND follows the implementa-
tion of [17], which is composed of an ordinary BCE loss and
a zero-centered gradient penalty for real images,

LD = EI [log(D(I))] + EÎ [log(1−D(Î))] + EI [∇2
ID(I)]

(11)

Methods
Hong ELFW Din Anwar

Ours
et al.[18] [19] et al.[8] et al.[20]

Shapes 14 12 50 20 900
Textures – – – 27 800

Table 1. The mask diversity of different methods or datasets.
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Fig. 2. 3D face reconstruction ability for masked faces.

4. EXPERIMENTS

We first present our implementation details. Then, we quali-
tatively compare our method’s 3D face reconstruction, mask
removal, and face editing abilities with state-of-the-art. Fi-
nally, we quantitatively compare the face restoration ability
of different methods at pixel and perceptual levels.

4.1. Training Details

Most mask-related approaches synthesize masked/unmasked
training pairs by overlaying mask templates on face images of
existing face datasets. However, as Table 1 shows, the mask
templates used by previous methods are pretty limited; only a
few tens of variations are far from sufficient to train a robust
model. Therefore, we 1) manually keyed out 900 masks from
the masked face images and 2) collected 800 texture patches
to replace the textures of the original masks1.

The mask templates are then combined with CelebAMask-
HQ [21] and FFHQ [22] to generate data pairs on the fly as
training goes (1000 images from FFHQ are left out for test-
ing). We train 500,000 steps for N3D and 200,000 steps for
NG-ND, both with a batch size of 8 and an initial learning
rate of 1e−4. For each module, the learning rate drops to
1e−5 when the training reaches its midpoint. We use Adam
with betas set to [0.9, 0.999] to optimize the two modules.
It takes about 60 hours to train N3D and 40 hours to train
NG-ND on two Nvidia GTX 1080 GPUs.

4.2. Qualitative results

Accurately reconstructing the 3D face from masked faces is
the prerequisite for the success of the subsequent inpainting
module. Therefore, we first compare our method with the
SOTA 3D reconstruction method of Deng et al. As shown
in Figure 2, the method of Deng et al. is stronly influenced

1Images are downloaded from Google and labeled using Apple Pencil.
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Fig. 3. Comparison of mask removal ability, the inputs are
aligned according to the methods’ settings, and the outputs
are remapped to the original images for a consistent view.
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Fig. 4. Comparison of face editing ability.

by the mask, resulting in deviations in texture and poses. In
comparison, our method is robust to face masks thanks to the
synthetic masked face images for training.

As Section 2 mentions, the method closest to ours is that
of Din et al. [8]. Unfortunately, they do not release their code;
therefore, we use the images from their paper for a more con-
vincing comparison. The other two methods we compare are
LaFIn [11] and Zhang et al., which can generate diverse in-
painting results. We provide those methods with mask regions
detected by N3D. As Figure 3 shows, our approach signifi-
cantly outperforms Zhang et al. and Din et al.. The random
sampling in the hidden space leads to apparent artifacts in the
results of Zhang et al.. Without a shape prior, the method of
Din et al. may generate distorted faces (row 4 column 2); In
addition, the poor accuracy of their mask segmentation mod-
ule results in residual mask edges on the face (row 4, columns
6 and 7). Our results are comparable with LaFIn, however,
the latter requires additional binary mask maps.

We further compare the face editing ability of our model
with LaFIn, the landmark-guided face inpainting method.
This time we provide LaFIn with 68 facial landmarks ex-
tracted from our predicted 3D face model. Figure 4 shows the
results guided by different 3D priors(for the face in the red
box in Figure 3). The first six columns are conditioned by dif-
ferent shapes and the last column is conditioned by a brighter
skin. As can be seen, with the guidance of our landmarks,
LaFIn can generate diverse inpainting results. Nevertheless,
due to the sparsity of the landmark, the generated faces do not

Methods L1 ↓ PSNR ↑ SSIM ↑ Cos ID ↑ FID ↓
Zheng et al. 0.020 24.709 0.893 0.506 12.808

LaFIn 0.018 25.569 0.897 0.543 12.465
Din et al. – 26.19 0.864 – 3.548

EdgeConnect† – 20.87 0.864 – 3.555
EdgeConnect 0.018 25.305 0.895 0.537 15.27

Ours 0.014 27.230 0.912 0.654 9.744

Table 2. Quantitative comparison.

precisely comply with the 3D face shapes; in addition, LaFIn
cannot change the skin color as we do in the last column.

4.3. Quantitative results

We synthesized 1000 masked face images on the test set,
and then used LaFIn and Zheng et al.’s method to recover
the unmasked faces (with externally provided binary mask
maps). The face restoration ability is evaluated by: L1 Loss,
PSNR score, SSIM score, FID score2, and the cosine similar-
ity of the identity features extracted by [15]. For Din et al.’s
method, since their code is not publicly available, we adopt
the data from their paper. Results are shown in Table 2. As
can be seen, our method outperforms others in all metrics ex-
cept FID score where Din et al. reported a much better result.
However, Din et al.’s data are questionable. To demonstrate
this, we further tested EdgeConnect [23], a method Din et
al. compared in their paper, using the released the code and
the pre-trained models. The results reported by Din et al.
and ours are shown in the 4th and 5th rows of Table 2, re-
spectively. It can be seen that the FID score of EdgeConnect
reported by Din et al. is similar to their proposed method but
much lower than the one we tested. We, therefore, question
the credibility of Din et al.’s data.

5. CONCLUSION

This paper proposes a novel framework for removing the
mask from the face image. First, we manually labeled a large,
high-quality dataset of face masks for synthesizing training
pairs. Next, we trained a mask-robust multi-task module for
reconstructing 3D faces and detecting the mask region of face
images. Finally, we proposed a 3D reconstruction guided face
inpainting module to generate non-deterministic and highly-
controllable results. The proposed method outperforms the
state-of-the-art qualitatively and quantitatively.

6. REFERENCES

[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein,
and Dan B Goldman, “Patchmatch: A randomized
correspondence algorithm for structural image editing,”
ACM Trans. Graph., vol. 28, no. 3, pp. 24, 2009.

2Using the open source tool: https://github.com/mseitzer/pytorch-fid



[2] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue,
Trevor Darrell, and Alexei A Efros, “Context encoders:
Feature learning by inpainting,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 2536–2544.

[3] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun
Wang, Andrew Tao, and Bryan Catanzaro, “Image in-
painting for irregular holes using partial convolutions,”
in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 85–100.

[4] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu,
and Thomas S Huang, “Free-form image inpainting with
gated convolution,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp.
4471–4480.

[5] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and
Augustus Odena, “Self-attention generative adversar-
ial networks,” in International conference on machine
learning. PMLR, 2019, pp. 7354–7363.

[6] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai, “Plu-
ralistic image completion,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 1438–1447.

[7] Volker Blanz and Thomas Vetter, “A morphable model
for the synthesis of 3d faces,” in Proceedings of the
26th annual conference on Computer graphics and in-
teractive techniques, 1999, pp. 187–194.

[8] Nizam Ud Din, Kamran Javed, Seho Bae, and Juneho
Yi, “A novel gan-based network for unmasking of
masked face,” IEEE Access, vol. 8, pp. 44276–44287,
2020.

[9] Kihyuk Sohn, Honglak Lee, and Xinchen Yan, “Learn-
ing structured output representation using deep condi-
tional generative models,” Advances in neural informa-
tion processing systems, vol. 28, 2015.

[10] Youngjoo Jo and Jongyoul Park, “Sc-fegan: Face edit-
ing generative adversarial network with user’s sketch
and color,” in Proceedings of the IEEE/CVF interna-
tional conference on computer vision, 2019, pp. 1745–
1753.

[11] Yang Yang, Xiaojie Guo, Jiayi Ma, Lin Ma, and Haibin
Ling, “Lafin: Generative landmark guided face inpaint-
ing,” arXiv preprint arXiv:1911.11394, 2019.

[12] Li Yu, Dequan Zhu, and Jian He, “Semantic segmenta-
tion guided face inpainting based on sn-patchgan,” in
2020 13th International Congress on Image and Sig-
nal Processing, BioMedical Engineering and Informat-
ics (CISP-BMEI). IEEE, 2020, pp. 110–115.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[14] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen,
Yunde Jia, and Xin Tong, “Accurate 3d face recon-
struction with weakly-supervised learning: From single
image to image set,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2019, pp. 0–0.

[15] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou, “Arcface: Additive angular margin loss for
deep face recognition,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
2019, pp. 4690–4699.

[16] Aravindh Mahendran and Andrea Vedaldi, “Under-
standing deep image representations by inverting them,”
in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2015, pp. 5188–5196.

[17] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo
Ha, “Stargan v2: Diverse image synthesis for multiple
domains,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp.
8188–8197.

[18] Je Hyeong Hong, Hanjo Kim, Minsoo Kim, Gi Pyo
Nam, Junghyun Cho, Hyeong-Seok Ko, and Ig-Jae Kim,
“A 3d model-based approach for fitting masks to faces
in the wild,” in 2021 IEEE International Conference on
Image Processing (ICIP). IEEE, 2021, pp. 235–239.

[19] Rafael Redondo and Jaume Gibert, “Extended labeled
faces in-the-wild (elfw): Augmenting classes for face
segmentation,” arXiv preprint arXiv:2006.13980, 2020.

[20] Aqeel Anwar and Arijit Raychowdhury, “Masked face
recognition for secure authentication,” arXiv preprint
arXiv:2008.11104, 2020.

[21] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo,
“Maskgan: Towards diverse and interactive facial image
manipulation,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
2020, pp. 5549–5558.

[22] Tero Karras, Timo Aila, Samuli Laine, and Jaakko
Lehtinen, “Progressive growing of gans for im-
proved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

[23] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi,
and Mehran Ebrahimi, “Edgeconnect: Structure guided
image inpainting using edge prediction,” in The IEEE
International Conference on Computer Vision (ICCV)
Workshops, Oct 2019.


	1  Introduction
	2  Related works
	3  Approach
	3.1  Segmentation-Reconstruction Module
	3.2  Inpainting Module

	4  Experiments
	4.1  Training Details
	4.2  Qualitative results
	4.3  Quantitative results

	5  Conclusion
	6  References

