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ABSTRACT

Video frame interpolation (VFI) is one of the fundamental re-
search areas in video processing and there has been exten-
sive research on novel and enhanced interpolation algorithms.
The same is not true for quality assessment of the interpo-
lated content. In this paper, we describe a subjective quality
study for VFI based on a newly developed video database,
BVI-VFI. BVI-VFI contains 36 reference sequences at three
different frame rates and 180 distorted videos generated using
five conventional and learning based VFI algorithms. Subjec-
tive opinion scores have been collected from 60 human par-
ticipants, and then employed to evaluate eight popular qual-
ity metrics, including PSNR, SSIM and LPIPS which are all
commonly used for assessing VFI methods. The results in-
dicate that none of these metrics provide acceptable correla-
tion with the perceived quality on interpolated content, with
the best-performing metric, LPIPS, offering a SROCC value
below 0.6. Our findings show that there is an urgent need
to develop a bespoke perceptual quality metric for VFI. The
BVI-VFI dataset is publicly available and can be accessed at
https://danier97.github.io/BVI-VFI/.

Index Terms— Video Frame Interpolation, Video Quality
Assessment, Subjective Database, BVI-VFI

1. INTRODUCTION

Video frame interpolation (VFI) has attracted increasing at-
tention in the research community over the past few years [1–
3]. By generating non-existent frames between two consec-
utive original frames in a video with a relatively low frame
rate [4], VFI up-converts the temporal resolution of a video,
increasing the motion consistency and overall perceptual
quality. VFI methods are used for the generation of slow
motion content [5], and also serves as a useful tool for video
compression [6, 7].

In recent years, deep learning (DL) techniques, in partic-
ular using convolutional neural networks (CNNs), have stim-
ulated the development of new VFI algorithms. These exist
as two main paradigms: flow-based and kernel-based. Flow-
based approaches [1, 2] focus on improving the accuracy of
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estimated optical flows that are used to warp the consecutive
original frames. In contrast, kernel-based methods [8, 9] learn
adaptive local kernels to synthesise the output pixels. Sev-
eral methods [3, 10] have also been developed to combine
flow-based warping and kernel-based synthesis to achieve im-
proved interpolation performance.

Although significant progress has been achieved using
these new VFI methods, there is very little research reported
on the quality assessment of interpolated content. The most
commonly used quality metrics are PSNR and SSIM [11].
In order to better predict the visual quality of interpolated
videos, perceptual quality metrics including LPIPS [12],
FRQM [13], ST-GREED [14], VIF [15] and VMAF [16],
which were designed for various application scenarios, can
also be employed. However, none of these methods have
been fully evaluated on frame interpolated videos, and their
correlation with subjective quality for this type of content is
unknown. It is also apparent that, in order to evaluate the per-
formance of these quality metrics, there is a requirement for
video quality databases containing diverse content generated
by various VFI algorithms. Such a database is absent in the
existing literature.

In this context, a subjective study has been conducted
based on a new database containing interpolated video con-
tent. This database, BVI-VFI, contains 36 reference se-
quences (from 12 original sources) with a spatial resolution
of 1080p (HD) at three different frame rates: 30, 60 and
120fps. Each of these 36 reference videos is then down-
sampled and interpolated by five VFI methods (two conven-
tional and three DL based) to produce a total of 180 distorted
videos. The subjective experiment employed a double stim-
ulus test methodology to collect quality opinion scores of
these distorted sequences. The video database and the as-
sociated ground-truth quality scores were then employed to
evaluate eight popular quality metrics, including those most
commonly used (PSNR, SSIM and LPIPS) in the VFI liter-
ature. The results show that none of these metrics provide
satisfactory correlation with perceptual quality, which raises
concerns when these assessment methods are used to com-
pare VFI algorithms. As far as we are aware, ours is the first
video quality database developed specifically for VFI, and
it offers a valuable platform for developing and evaluating
bespoke VFI quality metrics.
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The rest of this paper is organised as follows. Section 2
details the development of the BVI-VFI database, and the
methodology and configuration of the subjective experiment
is described in Section 3. We then present the results and
analysis in Section 4, and conclude the paper in Section 5.

2. THE BVI-VFI DATABASE

This section presents the methodology used to obtain the
36 reference and 180 distorted sequences in the BVI-VFI
database.

2.1. Reference Sequence Selection

Since the original video frame rate is an important factor
affecting the difficulty of VFI [17], it is desirable to have
frame rate as a controlled variable when evaluating VFI
methods. Based on this consideration, we selected our source
sequences from the BVI-HFR [18] dataset which contains
HD (1920×1080p) video sequences at various frame rates up
to 120fps and with diverse motion types. Twenty-two source
videos at 120fps (the acquisition frame rate) were included in
the initial selection pool, and then truncated to five seconds1.

In order to ensure wide coverage and high uniformity [20]
across the database, we follow the sequence selection proce-
dure described in [21] to select 12 source sequences from the
initial sequence pool2. Specifically, we computed four fea-
tures for each sequence: spatial information (SI), temporal
information (TI), motion vector (MV) and dynamic texture
parameter (DTP). The latter two were included because mo-
tion magnitude and complexity have direct impact on VFI [3].
The calculation of SI, TI and DTP can be found in [19] and
MV is described in [20]. The sample frames of the final 12
source sequences shown in Fig. 1.

The uniformity and coverage of features of the selected
source sequences are reported in Table 1, where high range
of coverage and excellent uniformity are achieved for all the
calculated features when compared to the statistics in [20].

The two lower frame rate versions (60fps and 30fps) of
these 12 sources were also included as reference sequences in
this database to generate interpolated content at various diffi-
culty levels. This makes a total of 36 reference sequences.

2.2. Test Sequence Generation

To generate different distorted versions, the 36 reference
sequences were first down-sampled temporally by a factor
of two through frame dropping [17]. The dropped frames
were then reconstructed using five different VFI methods
using their neighbouring frames. These include frame repeat-
ing, frame averaging (from two adjacent frames), DVF [1],

1This is to reduce the total experiment length based on the recommenda-
tion in [19].

2This number is set to limit the test time for each subject within 30 min.

Table 1: The uniformity and range of coverage for the references
sequences in the BVI-VFI dataset.

Feature SI TI DTP MV

Uniformity 0.943 0.970 0.916 0.767
Range 0.843 0.954 0.992 0.967

QVI [2] and ST-MFNet [3]. The first two were included
because they have very low computational complexity and
produce unique artifact types, juddering and blurring respec-
tively. The other three methods were all deep learning based
approaches. While DVF assumes linear motions between
frames, QVI adopts a second order motion model. ST-MFNet
is a more recent VFI method using multi-flow based warp-
ing [9], which enables more complex pixel transformation,
and it offers robust interpolation performance for different
types of video content. For the three DL based methods,
their model parameters trained in [22] have been used due
to their enhanced performance on challenging content, such
as large motion and dynamic textures. As a result, a total of
180 (36×5) distorted videos were generated. Example blocks
generated by various VFI methods are shown in Fig. 2.

3. SUBJECTIVE ASSESSMENT EXPERIMENT

This section describes the setup and procedures of the con-
ducted subjective experiment.

3.1. Experiment Setup

The psychophysical experiment was conducted in a darkened
lab-based environment [23]. A BENQ XL2720Z high frame
rate monitor with a screen size of 598×336 mm was used
to display the sequences. The display resolutions were con-
figured to 1920x1080 spatially, and all the sequences were
played at their original spatial resolution and frame rates. The
viewing distance was set to 1008 mm (three times the screen
height, compliant with ITU-R BT.500 [23]). The monitor was
connected a Windows PC, and Matlab Psychtoolbox 3.0 [24]
was used to control this experiment. Subjective scores were
collected using a wireless mouse provided to the participants.

3.2. Experimental Procedure

The experiment employed the Double Stimulus Continuous
Quality Scale (DSCQS) methodology [23]. In each trial, the
subject is shown two sequences, A and B, one of which is
the distorted video generated by one of the VFI methods, and
the other is the corresponding reference with original frames.
Their display order in the trial is randomised. After viewing
each sequence twice, the participant is presented with a grey
screen showing the question: “Please rate the perceived qual-
ity of the video.” Two sliders with five evenly spaced ticks
labelled Bad, Poor, Fair, Good, Excellent, corresponding to



(1) Bobblehead (2) Books (3) Bouncyball (4) Catch track (5) Cyclist (6) Golf side

(7) Hamster (8) Lamppost (9) Plasma (10) Pond (11) Sparkler (12) Water splashing

Fig. 1: Sample frames from the reference sequences in BVI-VFI database.

(a) Overlay (b) Original (c) Repeat

(d) DVF (e) QVI (f) ST-MFNet (g) Average

Fig. 2: Example blocks generated by various VFI algorithms. It
should be noted that for frame repeating, although the result
seems less distorted, the video exhibits motion juddering.

0, 25, 50, 75, 100 respectively, are also shown on the screen
to record the user input. The user is not told which sequence
in this pair is the reference throughout the experiment.

A total of 60 subjects were paid to participate in this ex-
periment, including 32 females and 28 males, with an average
age of 25. In order to avoid excessively long time for each
test session while ensuring sufficient raw subjective scores
for each trial, we followed the approach in [21] and divided
all the participants into three groups. The first group was pre-
sented with the material associated with the first four source
sequences (1-4 as shown in Fig. 1); the second group was as-
signed the next four source sequences (5-8); the last group
was shown the videos from the last four source sequences (9-
12). This results in 60 trials (4 source×3 frame rates×5 VFI
methods) for each session (participant), and the trial order in
each session is also randomised. At the beginning of each ses-
sion, the participant’s visual acuity and colour blindness were
assessed using a Snellen chart and a Ishihara chart respec-
tively. S/he was then given instructions and familiarised with
four practice trials, which contained different sequences from
those in BVI-VFI. Each formal test session took 30 minutes
on average.
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Fig. 3: The DMOS values for 5 VFI methods at 3 frame rates. The
error bar denotes the standard error over sequences. Note that
lower DMOS values correspond to better visual quality.

3.3. Data Processing

The collected subjective data (i.e. ranging from 0-100) were
processed as follows. Firstly, for each subject and each trial,
a differential score was obtained by subtracting the score
assigned to the distorted video from the score given to the
reference video. Then the differential mean opinion score
(DMOS) for each distorted sequence was obtained by taking
the average of all the differential scores for that sequence.
This totalled to 180 DMOS values corresponding to the 180
distorted videos.

4. RESULTS AND DISCUSSION

The DMOS values obtained for each of the five VFI methods
at 3 frame rates are plotted in Fig. 3, where it can be seen that
ST-MFNet shows the best overall performance across differ-
ent frame rates, while QVI performs similarly well at 120fps.
It is also observed that content interpolated by DVF received
the highest DMOS values for all frame rates, and this may be
due to the linear motion assumption made in DVF – the op-
tical flows between the non-existent middle frame to the next
and previous frames are assumed symmetric. This can largely
limit the performance of DVF, especially on the sequences in
BVI-VFI dataset which contain complex motions.

These DMOS values were then used to evaluate their cor-
relation with eight quality metrics: PSNR, SSIM [11], MSS-



54 56 58 60 62 64
PSNR

-20

0

20

40

60

80

100

D
M

O
S

(a)

0.5 0.6 0.7 0.8 0.9 1
SSIM

-20

0

20

40

60

80

100

D
M

O
S

(b)

0 0.1 0.2 0.3 0.4
LPIPS

-20

0

20

40

60

80

100

D
M

O
S

(c)

50 60 70 80 90 100
VMAF

-20

0

20

40

60

80

100

D
M

O
S

(d)

Fig. 4: Plots of DMOS values against the scores of selected quality metrics. PSNR, SSIM and LPIPS are commonly used in VFI, and VMAF
is the second best performing metric. The blue lines are the logistic function fitted on the BVI-VFI database.

Table 2: The performance of the tested quality assessment models
on the BVI-VFI dataset.

All data non-DL DL

Metric PLCC SROCC OR RMSE SROCC SROCC

PSNR 0.471 0.520 0.028 19.358 0.332 0.546
SSIM 0.475 0.581 0.044 19.328 0.305 0.627

MSSSIM 0.529 0.593 0.033 18.623 0.334 0.636
LPIPS 0.597 0.599 0.022 17.603 0.401 0.600

VIF 0.489 0.535 0.039 19.152 0.332 0.548
FRQM 0.456 0.535 0.033 19.525 0.725 0.457

ST-GREED 0.214 0.112 0.050 21.432 0.064 0.152
VMAF 0.564 0.595 0.039 18.115 0.345 0.628

SIM [25], LPIPS [12], VIF [15], VMAF [16], FRQM [13] and
ST-GREED [14]. While PSNR, SSIM, MSSSIM, and LPIPS
are commonly used for assessing video frame interpolation
methods, VIF and VMAF are included due to their superior
correlation with perceptual quality in other application sce-
narios (e.g. video compression [21]). Additionally, FRQM is
designed to measure video quality when frame rate is altered
(reduced), which is relevant to VFI. Finally, ST-GREED is
a machine learning based approach that concerns both com-
pression and temporal down-sampling artefacts.

The quality metrics were evaluated based on four sta-
tistical parameters, Pearson Linear Correlation Coefficient
(PLCC), Spearman Rank Order Correlation Coefficient (SROCC),
Outlier Ratio (OR) and Root Mean Squared Error (RMSE)
[26]. For the calculation of PLCC, OR and RMSE, a logis-
tic function is fit on the ground-truth DMOS values and the
computed metric scores as described in [27].

The performance of all eight evaluated quality metrics is
summarised in Table 2, where it can be observed that, for the
whole BVI-VFI database, the best performing metric, LPIPS,
revealed PLCC and SROCC values lower than 0.6. We have
further subgrouped the database into two classes based on the
nature of the interpolation methods. For content interpolated
by non deep learning approaches, FRQM offers the highest
SROCC of 0.725. MSSSIM appears to be the top metric for
evaluating test sequences interpolated by deep learning (DL)
based VFI methods. The DMOS and metric values and the
fitted logistic curves for PSNR, SSIM, LPIPS and VMAF are
also plotted in Fig. 4.

After manual inspection of the sequences whose qual-
ity indices are significant outliers away from the fitting
curves, we found that most tested quality metrics tend to
fail when the scene contains a static background behind fast-
moving objects, e.g. the sequences Golf side and Hamster.
In these cases, all the VFI methods are likely to produce non-
uniformly distributed artefacts, primarily around the small
areas with foreground moving objects. This leads to poor as-
sessment performance of these metrics due to their employed
spatial pooling method, arithmetic mean.

To further assess the statistical significance of the metric
performance difference, for every pair of metrics, an F-test
is performed on the residuals between the true DMOS values
and the DMOS predicted by the metrics using the fitted lo-
gistic function [28]. With 95% confidence, most metrics are
equivalent based on the F-test, except that MSSSIM, LPIPS
and VMAF are superior to ST-GREED.

In summary, our results indicate that none of the met-
rics evaluated here (including PSNR, SSIM and LPIPS that
are most commonly employed for VFI) offer satisfactory cor-
relation with perceptual quality on temporally interpolated
videos. This means that there is an urgent need to develop a
bespoke perceptual quality metric for video frame interpola-
tion, especially for the evaluation of DL based VFI methods,
where the highest SROCC achieved is 0.636 (by MSSSIM).

5. CONCLUSION

This paper presents subjective study results based on a novel
video quality database, BVI-VFI, dedicated to video frame in-
terpolation. This database consists of 36 reference sequences
with diverse motion types and their corresponding 180 dis-
torted sequences. The subjective study was conducted to col-
lect opinion scores on the distorted sequences, and the results
were then used to evaluate eight quality metrics commonly
used in VFI and other application scenarios. The results in-
dicate that none of the tested metrics offer acceptable corre-
lation performance with perceptual quality on this database.
There is thus an urgent need for research into a bespoke per-
ceptual quality metric which offers dramatically improved as-
sessment performance for VFI.
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