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ABSTRACT

Gait recognition, which refers to the recognition or identifica-
tion of a person based on their body shape and walking styles,
derived from video data captured from a distance, is widely
used in crime prevention, forensic identification, and social
security. However, to the best of our knowledge, most of the
existing methods use appearance, posture and temporal feau-
tures without considering a learned temporal attention mecha-
nism for global and local information fusion. In this paper, we
propose a novel gait recognition framework, called Tempo-
ral Attention and Keypoint-guided Embedding (GaitTAKE),
which effectively fuses temporal-attention-based global and
local appearance feature and temporal aggregated human pose
feature. Experimental results show that our proposed method
achieves a new SOTA in gait recognition with rank-1 accu-
racy of 98.0% (normal), 97.5% (bag) and 92.2% (coat) on
the CASIA-B gait dataset; 90.4% accuracy on the OU-MVLP
gait dataset.

Index Terms— Gait Recognition, Temporal Attention,
Human Pose Estimation

1. INTRODUCTION

Gait recognition, which uses video data captured from a dis-
tance to recognize or identify a person based on their body
shape and walking styles, is wildly used in crime prevention,
forensic identification, and social security, etc. Person re-
identification (ReID) is one of the most popular research in
the computer vision community. However, merely using the
appearance feature is not sufficient to deal with some difficult
scenarios, e.g., the same identity dressing different clothing,
low resolution videos, the dark illumination cases. Therefore,
gait recognition can serve as an effective supplement or alter-
native to overcome these issues.

There are two popular ways to recognize gaits in liter-
atures, i.e., model-based [1, 2, 3, 4] and appearance-based
[5, 6, 7, 8]. The model-based approaches focus on the articu-
lated human features such as the size of a link or joint angles,
which can tolerate the appearance changes of an identity due
to the clothings or accessories. These approaches require to

preprocess the raw RGB videos to capture the pose structure
or silhouettes. On the other hand, several studies have pro-
posed appearance-based gait recognition approaches, which
use RGB image sequences as input to recognize the identi-
ties directly. However, model-based approaches lose the body
shape information and require high accuracy human pose es-
timation results for gait recognition. Moreover, appearance-
based approaches suffer from the sensitivity to the identities’
covariates (e.g., dressing and carrying conditions).

In this paper, we propose a novel framework to generate
the Temporal Attention and Keypoint-guided Embeddings in
a principle way called GaitTAKE. The intuition of GaitTAKE
is to take both global and local appearance features into ac-
count, then the learning of the silhouette embedding is trained
by the temporal information. Thus, we can not only solve
the flaws by the temporal pooling but also fuse the tempo-
ral information into the global and local features. Moreover,
we combine the human pose information with the mentioned
global and local features so that our method can achieve the
large amount of improvement in the wearing coat scenario of
gait recognition, which is the most difficult case in gait recog-
nition since the coat will cover most of the area of the hu-
man legs. GaitTAKE forms embeddings over multiple frames
with a global and local convolutional neural network [9] and
human pose information with temporal attention mechanism.
According to our experimental results, GaitTAKE achieves
the state-of-the-art performance in CASIA-B [10] and OU-
MVLP [11] benchmarks.

2. RELATED WORKS

Due to the growth of deep learning, many researchers exploit
convolutional neural networks (CNNs) to achieve great im-
provement for gait recognition [8, 12, 13, 14, 15, 16]. The
feature representation ability is robust, e.g., cross-view gait
sequence can be recognized only based on the CNN feature
and well-designed loss function.

In terms of taking advantage of temporal information,
there are two types of deep learning approaches: recur-
rent neural networks (RNNs) and 3D CNNs. In RNNs, the
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Fig. 1. The architecture of the proposed GaitTAKE framework. First, the frame-level features for the gait videos are extracted
by a global and local feature fusion backbone and a human pose feature extraction backbone Keypoint-RCNN. The extracted
frame-level features (i.e., appearance features and human pose features) are fed into the temporal attention (TA) module. The
TA weights are applied on the frame-level features to obtain the sequence-level features for each gait video.

features are learned by a sequence of consecutive frames
[16, 17, 18]. For a 3D CNN, the spatio-temporal information
can be extracted by the 3D tensors [15, 19, 9]. Nonetheless,
there is a limitation of using 3D CNNs for gait recognition,
which is the lack of flexibility for variable-length sequences.

3. PROPOSED METHOD

3.1. TA-based Global and Local Feature Fusion

As shown in Fig. 1, the proposed feature extraction network
architecture aims to simultaneously extract the global and lo-
cal feature information and temporal information from the sil-
houette images. First, the 3D convolution is applied to extract
more representative features from the silhouette images, since
3D convolution network is proved as an effective feature ex-
tractor for gait recognition [9, 15, 19]. After that, the local
information is extracted by horizontally dividing the image
into several body partitions and the global information is ex-
tracted by a whole silhouette image. In order to aggregate the
temporal information into the local and global feature maps,
two 3D convolutions are applied to the local feature maps and
the global feature map, separately. The local feature maps
(i.e., body partition features) share the same weights of 3D
convolutions. According to [9], the generated global and lo-
cal features can be added into one feature map to ensemble
both global and local information. Then, this global and lo-
cal feature fusion operation is repeated with the same network
configuration and different convolution kernels for n times to

generate the more robust global and local fusion features.
The first step of generating the TA-based global and local

feature fusion is to first generate the global and local features
separately. We use X ∈ Rc1×T×h×w to represent one se-
quence of silhouette with length T (the image size is h× w),
and {Xi

local|i = 1, · · · ,m} denotes the m local gait partition
features. c is the channel size of the feature map. Thus, we
can express the global gait feature fglobal as

fglobal(X) = φ3×3×3global (X) ∈ Rc2×T×h×w, (1)

where φ3×3×3global denotes 3D convolution operation with kernel
size 3×3×3. And for local gait feature flocal, similar mech-
anism is applied with shared 3D convolution kernels,

flocal(X) = flocal({Xi
local|i = 1, · · · ,m})

= φ3×3×3local (X1
local) ⊕ · · · ⊕ φ3×3×3local (Xm

local)

∈ Rc2×T×h×w,

(2)

where φ3×3×3local is the shared 3D convolutional layer with ker-
nel size 3× 3× 3; ⊕ indicates the concatenation operation.

The TA fusion module is composed of two different
structures of global and local convolutional (GLConv) layers,
i.e., GLConvA and GLConvB. Fig. 1 shows that there are
n GLConv layers in this module for generating the global
and local information fusion feature fGL (n = 3). The last
GLConv layer is GLConvB and the rest of other GLConv



layers are GLConvA,

GLConvA(X) = fglobal(X) + flocal(X)

∈ Rc2×T×h×w.
(3)

GLConvB(X) = fglobal(X)⊕ flocal(X)

∈ Rc2×T×2h×w.
(4)

Therefore, we can apply flatten operation ξ(·) to get the global
and local information fused feature fGL,

fGL = ξ(GLConvB(GLConvA(GLConvA(X))))

∈ RT×DGL ,
(5)

where DGL is the dimension of the fGL.
After obtaining the global and local information fused fea-

ture fGL, we can start to apply the TA mechanism to generate
the final embedding fTGL. First of all, the sequence of each
subject is split into several clips. Assume the clip size is L,
S =

⌊
T
L

⌋
is the number of clips, and D indicates the dimen-

sion of the clip-level feature.

f clipGL = {f clip,1GL , · · · , fclip,SGL } ∈ RS×L×D. (6)

Then, there are two convolutional layers used for each clip in
the TA module TGL(·) to produce a feature vector. We subse-
quently apply a softmax layer to this feature vector to generate
a 1 × L-dim attention vector AGL for weighting the frame-
level feature so that the clip-level feature f clip,iTGL ∈ R1×D can
be created.

f clip,iTGL = TGL(f
clip,i
GL ) = AGL · f clip,iGL ∈ R1×D. (7)

AGL = σGL(δGL,2(δGL,1(f
clip,i
GL ))) ∈ R1×L. (8)

where σGL(·) is the softmax operation; δGL,1 and δGL,2 de-
note the first and second convolutional layer, respectively.

Finally, one average pooling layer ψGL(·) is applied to
these clip-level embeddings f clipTGL to generate the final em-
bedding fTGL.

fTGL = ψGL(f
clip
TGL) ∈ R1×D. (9)

3.2. Temporal Aggregated Human Pose Feature

In our framework, we not only consider the appearance em-
bedding feature but also the human pose features since gait
recognition is significantly related to the corresponding hu-
man pose. We use the keypoint R-CNN [20] to obtain the
human pose information. Since not all of the gait recogni-
tion datasets contain the human pose information, we use a
pretrained model which is trained on COCO dataset to infer
the human pose information based on the available RGB im-
ages as the ground truth human pose labels. Then, we use
the human pose label to train the keypoint R-CNN based on
the silhouette images so that we can use the trained keypoint

R-CNN model to infer the human pose information on the
silhouette images.

After the human pose is estimated, we use the resulting
2D keypoints (body joints) as the extra features for the gait
recognition. The dimension of the human pose features K
for each frame is 17 × 3, where 17 is the number of joints,
and 3 denotes the 2D joint coordinates (x, y) and correspond-
ing confidence score c. Similar to the appearance features,
we also apply the temporal attention technique on the hu-
man pose features to aggregate the frame-level features into
the clip-based human pose features, and then concatenate the
Temporal Aggregated Human Pose Feature with fTGL as the
final representation f clipTAKE for gait recognition.

Consequently, we use a Generalized-Mean pooling (GeM)
[9] to integrate the spatial information into the feature maps.
GeM can effectively generate the more robust representation
from the spatial information, Traditionally, researchers fuse
the feature from average pooling and max pooling results by
a weighted sum, on the other hand, GeM can directly fuse
these two different operations to form a feature map, with
p = 1 being equal to average pooling and p =∞ being equal
to max pooling,

fGeM = (ψGeM ((fTAKE)
p))

1
p , (10)

where ψGeM(·) is an average pooling operation.

3.3. Loss Function

The last step of feature extraction is to apply C multiple dif-
ferent fully connected layers to the same fGeM to generate C
one-dimensional embedding f . Thus, each subject can be rep-
resented by C different embeddings, and all the f of the sub-
ject is used to calculate the loss independently. The loss func-
tion of our architecture is triplet loss, which is wildly used
and proved to have superior performance in ReID tasks.

The definition of the triplet loss function is as follows:

ltriplet(a) =

m+
∑

p∈P (a)

wpDap −
∑

n∈N(a)

wnDan


+

,

(11)
where m is the margin, Dap and Dan indicates the distances
between the anchor sample a to form the positive instance and
negative instance, respectively. Moreover, wp and wn mean
the weights of positive and negative instances.

4. EXPERIMENTS

In this work, we use two benchmarks for evaluating the pro-
posed GaitTAKE, namely CASIA-B and OU-MVLP. The first
part of this section is to describe the details of the implemen-
tation. The second part is to compare GaitTAKE with other
state-of-the-art methods in these two datasets.



Setting Probe Method Probe View
0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

LT(74)

NM#5-6

Gaitset [13] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
MT3D [15] 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
GaitGL [9] 94.6 97.3 98.8 97.1 95.8 94.3 96.4 98.5 98.6 98.2 90.8 96.4

GaitPart [14] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
GaitTAKE (Ours) 96.7 98.6 99.1 98.1 97.3 96.3 98.0 98.9 99.2 99.2 96.4 98.0

BG#1-2

Gaitset [13] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
MT3D [15] 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0
GaitGL [9] 90.3 94.7 95.9 94.0 91.9 86.5 90.5 95.5 97.2 96.3 87.1 92.7

GaitPart [14] 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5
GaitTAKE (Ours) 96.7 97.0 97.9 97.6 97.9 95.7 97.0 98.2 99.0 99.0 96.4 97.5

CL#1-2

Gaitset [13] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
MT3D [15] 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
GaitGL [9] 76.7 88.3 90.7 86.6 82.7 77.6 83.5 86.5 88.1 83.2 68.7 83.0

GaitPart [14] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
GaitTAKE (Ours) 89.1 95.3 96.2 93.9 91.5 90.5 92.5 93.3 93.0 91.8 87.0 92.2

Table 1. Rank-1 accuracy (%) of the proposed method on CASIA-B under all views, diffeent size of training data and condi-
tions, excluding identical-view cases. The three walking conditions of sequences include normal (NM), walking with bag (BG)
and wearing coat or jacket (CL). The best and second accuracy of each probe view will be in bold and underlined respectively.

Method Probe View
0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ Mean

Gaitset [13] 79.5 87.9 89.9 90.2 88.1 88.7 87.8 81.7 86.7 89.0 89.3 87.2 87.8 86.2 87.1
GaitPart [14] 82.6 88.9 90.8 91.0 89.7 89.9 89.5 85.2 88.1 90.0 90.1 89.0 89.1 88.2 88.7
GaitGL [9] 84.3 89.8 90.8 91.0 90.5 90.3 89.9 88.1 87.9 89.6 89.8 88.9 88.9 88.2 89.1

GaitTAKE (Ours) 87.5 91.0 91.5 91.8 91.4 91.1 90.8 90.2 89.7 90.5 90.7 90.3 90.0 89.5 90.4

Table 2. Rank-1 accuracy (%) of the proposed method on OU-MVLP under 14 probe views excluding identical-view cases.

4.1. Implementation Details

In our implementation, the batch size P×K is set to 8×8 = 64
in both CASIA-B and OU-MVLP datasets. Following [13],
we use 30 frames of each input gait sequence for training and
the whole gait sequences are used for extracting gait features
in testing. In terms of the number of GLConv layers n, we use
3 GLConv layers (i.e., GLConvA, GLConvA and GLConvB)
for CASIA-B dataset. Because OU-MVLP dataset is 20 times
larger than the CASIA-B dataset, we use a total of 5 layers,
which are 4 GLConvA following by 1 GLConvB layer.

Since the CASIA-B dataset does not contain the key-
point information, we adopt the pre-trained Keypoint R-CNN
trained on COCO to estimate the keypoints, which are then
used as ground-truth to train the Keypoint R-CNN using
masked images, instead of RGB images, as input data. The
experimental environment is Python 3.7 and Pytorch 1.7 with
one Nivida GV100.

4.2. Gait Recognition Performance

Evaluation on CASIA-B. We compare our method with
state-of-the-art methods: Multiple-Temporal-Scale 3D Con-
volutional Neural Network (MT3D) [15], Gaitset [13], Gait-
Part [14] and GaitGL [9] in three different conditions (NM,
BG, and CL). The experimental results show that the rank-1

accuracy of the proposed method is higher than GaitGL by
about 1.6% and 4.8% in NM and BG, and about 9.2% in CL
with the setting of large-scale training (LT, i.e., 74 subjects
for training), respectively. It shows that the proposed method
has significant advantages in the BG and CL conditions, in-
dicating that the representation of GaitTAKE is much more
discriminative than other state-of-the-of methods.
Evaluation on OU-MVLP. We also evaluate the performance
of GaitTAKE on the OU-MVLP dataset, where we follow
the same training and test protocols as the GaitSet, GaitPart
and GaitGL methods for fair comparison. The experimental
results are shown in Table 2 and then our method can also
achieve the best performance in all cases.

5. CONCLUSION

In this paper, we propose GaitTAKE, which utilizes the
temporal attention module to generate the embedding for
multi-view gait recognition. We use human pose information
and temporal attention to construct the more robust features.
Our experimental results show that we can achieve the state-
of-the-art performance rank-1 accuracy on two representa-
tive gait recognition benchmarks: CASIA-B and OU-MVLP
dataset.
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