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Abstract—The brain age has been proven to be a phenotype of
relevance to cognitive performance and brain disease. Achieving
accurate brain age prediction is an essential prerequisite for
optimizing the predicted brain-age difference as a biomarker. As
a comprehensive biological characteristic, the brain age is hard
to be exploited accurately with models using feature engineering
and local processing such as local convolution and recurrent
operations that process one local neighborhood at a time. Instead,
Vision Transformers learn global attentive interaction of patch
tokens, introducing less inductive bias and modeling long-range
dependencies. In terms of this, we proposed a novel network for
learning brain age interpreting with global and local dependen-
cies, where the corresponding representations are captured by
Successive Permuted Transformer (SPT) and convolution blocks.
The SPT brings computation efficiency and locates the 3D spatial
information indirectly via continuously encoding 2D slices from
different views. Finally, we collect a large cohort of 22645 subjects
with ages ranging from 14 to 97 and our network performed the
best among a series of deep learning methods, yielding a mean
absolute error (MAE) of 2.855 in validation set, and 2.911 in an
independent test set.

Index Terms—Long-range dependencies, Brain age estimation,
Transformer, CNN

I. INTRODUCTION

Recently, researches have demonstrated that MRIs could

be used to predict chronological age and show that the

brain age, derived purely from neuroimaging data is vital to

help improve detection of early-age neurodegeneration and

predict age-related cognitive decline [3]. Meanwhile, predicted

age difference (PAD), the difference between predicted brain

age and chronological age, correlates with the measures of

mental and physical changes [11]. For example, positive PAD

introduces that the brain is older than the actual age and the

subject is experiencing accelerated aging. Furthermore, it is

also shown to be associated with cognitive impairments [16,

4], brain injuries, and other brain diseases [14, 15]. Therefore,
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ence and Technology Stable Support Program (GXWD20201230155427003-
20200822115709001), the National Key Research and Development Program
of China (2021YFC2501202), and the National Natural Science Foundation
of China (62106113).

it is an essential prerequisite to achieve accurate brain age

estimating for quantifying the PAD as a biomarker.

The brain age estimation is a fine-grained recognition task,

and the actual brain characteristics of the T1w image and

structural changes could be hardly sensed explicitly. Recently,

deep learning methods like 3D Convolution Neural Network

(CNN) have been used to predict brain age and achieve

promising results [3, 21, 18] without a prior bias or hypothesis.

However, CNN methods are limited by only processing local

neighborhood features and propagating signals progressively

[25], where the hidden features might be lost and more induc-

tive bias would be introduced. Recently vision Transformer

models retain global image information and could relate

long-range relationships between patches using self-attentions,

achieving state-of-the-art performance on image classification,

object detection, and semantic segmentation. The success of

these models demonstrates the potential for Transformer to

be used in the vision domain with the essential characteristic

of encoding long-range dependencies and retaining global

information. Nevertheless, studies have pointed out that long-

range dependencies would also fail to work well, where a

position is often less correlated far away from it, compared

with those that are nearer [8]. Therefore, there is still a gap

between encoding representations with short-range and long-

range dependencies, which restricts the models’ flexibility in

diverse spatial scales and relationships in images [8].

To address this problem, we propose a novel network for

brain age estimation, called the Global and Local Dependency

Network (GLDN). The GLDN sufficiently utilizes the CNNs

for encoding densely-distributed local features and strength-

ening locality with local dependencies, and Transformer for

encoding sparsely-distributed semantic concepts and estab-

lishing global dependencies. Especially, the fusion block is

the basic module in our model and allows locating and

aggregating the local and global concepts from CNNs and

Transformer of each stage. Besides, we propose a new vision

Transformer block, called Successive Permuted Transformer

(SPT) for locating long-range dependencies of 3D medical

images. The SPT leverages the spatial information of 3D

images to be encoded by 2D operations by different views,

which indirectly locates the spatial relationships and brings

computation efficiency. Finally, we compared our model with

http://arxiv.org/abs/2209.08933v1


D
istrib

u
tio

n
 P

red
ictio

n
 &

 

E
x
p

ectatio
n
 R

eg
ressio

n

cFusion Block 1 c… …

GLB

LLB

Fusion Block N

GLB

LLB

Fig. 1. The framework of the GLDN network, including several fusion blocks,
and a distribution prediction and expectation regression module. Each fusion
block(in yellow) is composed of a global learning block (GLB, in green), a
local learning block (LLB, in blue), and an aggregation operation (shown as
a symbol C).

a series of models including CNNs and vision Transformer

models on a large cohort of five datasets, where the results

are improved compraed with other well-estimated models.

II. METHOD

A. Framework

We illustrate the sketch map of the GLDN network in Fig. 1,

which is composed of several fusion blocks, and a classifier

with a label distribution prediction and expectation regression

module. Each fusion block is built with a global learning

block, a local learning block, and an aggregation operation.

1) Local Learning Block: In detail, two CNN blocks

are embedded in the local learning block. Each CNN block

consists of a 3D convolution layer with a kernel size of 3,

padding size of 1, and batch normalization, a ReLU activation,

and a max-pooling layer with a pooling size of 2. With two

CNN blocks, the feature size of input would be reduced into

(1
4
, 1

4
, 1

4
). The local Learning Block could be denoted as:

xl
local = LLB(xl) = CB(CB(xl)) (1)

CB(xl) = MaxPool(BN(ReLU(Conv(xl)))) (2)

where xl is the input of the l − th fusion block, xl
local is

the output of a local learning block, LLB denotes the local

learning block, and CB denotes a CNN block.

2) Global Learning Block: The global learning block is

built with successive permute Transformer blocks to capture

global information with full-range dependencies. Apart from

the original ViT structure, the SPT, shown in Fig. 2, is

designed to better suit 3D medical images with three sequential

Transformer parts, where each part locates relationships of

slices separated from different views (Sagittal, Axial, Coronal).

In detail, each part consists of a permute operation, a patch

splitting layer, Transformer layers, and a patch merging layer.

To reduce numerous parameters in modeling 3D medical

images using Transfromer, the 3D input is permuted along

each axis and cropped into 2D slices. For example, a permute

operation would transform an input in the size of 96× 114×
96 into 96 slices with each size of 114 × 96 along the first

axis. The slice would be continued to be segmented into non-

overlapping patches by patch splitting.

The Transformer encoders consist of multi-head self-

attention blocks (MSA), layer norms, and fully connected

feed-forward blocks. The input tokens xt ∈ RN×d are linear

projected into qkv spaces, where queries (Q), keys (K), values

(V), and the output, a weighted sum of the values are computed

as

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (3)

Finally, the multi-head attention layer is defined by combining

multiple attentions. The outputs of several self-attention blocks

are concatenated and sent into the patch merging layers.

Through computing dot-product, the similarity between dif-

ferent tokens is calculated, resulting in long-range and global

attention.

The patch merging layers are implemented for feature map

compression via concatenating the features of each group of

2 × 2 neighboring patches and linear projection, at the same

time producing hierarchical representations, by reference to

the design in [17]. The patch merging layer is implemented

followed by the Transformer layer. Within a SPT, the input

would be reduced into (1
4
× 1

4
× 1

4
) with each patch merging

layer downsampling the feature size of one view into 1

2
× 1

2
.

The design of successive Transformer indirectly realizes the

spatial position relationship learning through permute opera-

tions. Finally, the proposed GLDN network can be noted as:

xl
local = LLB(xl) (4)

xl
global = GLB(xl) (5)

xl
fusion = Aggregate({xl

local, x
l
global}) (6)

where, l denotes the l-th layer, and GLB denotes the global

learning block.

B. LDL & expectation regression and loss function

In this paper, we leverage the label distribution learning

combined with the expectation regression as the loss function.

This strategy forces the deep learning regression model to take

care of the ambiguity among labels [5]. In this paper, all the

ages (y ∈ R) of healthy subjects range from 14 to 97. And we

define the label set as L = (lk|k = 14, 15, ..., 97), and ∆l =
1 as the discrete step size. The probability density function

of normal distribution is chosen to generate the ground-truth

(qk|k = 14, 15, ..., 97) with a hyper-parameter θ:

y =
∑

k

lkqk, qk ∈ (0, 1) (7)

qk =
pk∑
k pk

(8)

pk =
1√
2πθ

e−
(lk−y)2

2θ2 (9)

The goal of the label distribution prediction is to maximize

the similarity between qk and the predicted distribution q̂k. The

Kullback-Leibler divergence is employed as the measurement

of the dissimilarity between ground-truth label distribution and

prediction distribution:

Lkl =
∑

k

qklog
qk

q̂k
(10)
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Fig. 2. The design of a SPT block, where the 3D information is learned by three successive Transformer. Permutation operations leverages the framework
to relate spatial context from one view at one time.

And the expectation regression takes the predicted distribution

and the label set L as inputs. The expectation regression

module minimizes the error between the expected value ŷ and

ground-truth y. The L1 loss is used as the error measurement:

Lmae = |ŷ − y| = |
∑

k

q̂klk − y| (11)

Totally, the weighted combination of Lkl and Lmae with the

weight λ is employed as our loss function:

L = Lkl + λLmae =
∑

k

qklog
qk

q̂k
+ λ|

∑

k

q̂klk − y| (12)

III. EXPERIMENTS

A. Datasets

The methods were evaluated on T1-weighted MR im-

ages from a large cohort consisting of IXI database

(http://brain-development.org), the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) [9], UK Biobank[24, 20],

the Open Access Series of Imaging Studies (OASIS)[19],

and 1000 Functional Connectomes Project (1000-FCP,

http://www.nitrc.org/projects/fcon 1000). Only healthy sub-

jects were selected in our experiments. A total of 22645

T1-weighted MRI images of subjects aging between 14 and

97 years old are selected to form our cohort. All data were

acquired at either 1.5T or 3T T1-weighed MRI.

B. Data Preprocessing

All data were all processed with the same pipeline, in-

cluding image FOV truncation [10], AC-PC align, brain skull

stripping, bias field correction [23], and linear-registration into

the standard MNI space. Additionally, z-score normalization

is employed to narrow the gap between different data centers.

It is proved to improve the synthesis results and is vital

for successful deep learning-based MR image synthesis [22].

After preprocessing, all images are down-sampled by linear-

registering into the standard 2mm3 MNI space and padded

into the size of 96× 112× 96 for successive non-overlapping

downsampling.

C. Experimental Setting

For comparison, we divided all the data samples into three

subsets including training set (80%), validation set (10%), and

a test set (10%). The test set is fixed and a cross-validation with

4 fold was performed on the rest samples. The performance

is evaluated by the mean absolute error (MAE), root mean

squared error (RMSE), Pearson correlation coefficient (PCC),

and Spearman’s rank correlation coefficient (SRCC).

Our proposed GLDN is embedded with two fusion blocks

to ensure the integrity of slicing and downsampling. The first

fusion block is built with an SPT block with a patch size of

[8× 8], and two CNN blocks with the channel number of [16,

32]. The second fusion block receives the concatenation of

the first fusion block with a channel of 40. Within the second

fusion block, the patch size of the SPT is set as [2 × 2], and

the convolution channel is set as [64, 128].

For better comparison, machine learning methods with

feature engineering and deep learning methods with CNNs,

and Transformer networks are both carried out. An ensemble

model of XGBoost [2] and LightGBM [12] methods was

carried out, using relative volume fraction of the brain regions

segmented by FastSurfer [7]. A series of end-to-end CNN

based methods including 3D-ResNet, SFCN [21], and TSAN

[18] are trained and implemented. For ResNet, the original 2D

operations were replaced by 3D and a dropout with drop rate

= 0.5 was applied before the final fully connected layer. Here

we implement the first stage of TSAN for fair comparison.

Besides, Transformer methods like ViT, DETR [1], Nested

Transformer are also compared. The depth of layers and

number of the attention heads are tuned according to different

architectures with a grid search of [4, 6, 8, 12]. These models

receive 2D images as input for default and are modified to suit

3D medical images by replacing 2D operations into 3D.

In addition, we implement the DeTR design with different

numbers of layers, where 1/2/3 CNN blocks are compared in

DeTR-1/2/3 respectively. Especially, the nested Transformer is

modified by reference to the [6] and is carried out using an

http://brain-development.org
http://www.nitrc.org/projects/fcon_1000


TABLE I
PERFORMANCE OF BRAIN ESTIMATIONS USING DIFFERENT MODELS.

Validation Set Independent Test Set

Type Models MAE RMSE PCC SRCC MAE RMSE PCC SRCC

Machine learning XGBoost+LightGBM 4.290 7.130 0.815 0.818 4.298 7.150 0.808 0.814

CNNs

Resnet18 3.265 4.386 0.871 0.867 3.383 4.612 0.858 0.854

Resnet34 3.204 4.314 0.873 0.867 3.334 4.640 0.861 0.851

Resnet50 3.226 4.553 0.871 0.867 3.349 4.817 0.854 0.850

SFCN 2.993 4.097 0.875 0.869 3.093 4.228 0.872 0.856

TSAN (first-stage) 2.948 4.150 0.874 0.868 3.076 4.350 0.861 0.866

Transformer
Models

ViT 3.419 4.613 0.863 0.865 3.536 4.859 0.848 0.851

DeTR-1 3.335 4.509 0.866 0.865 3.344 4.517 0.863 0.854

DeTR-2 2.920 4.101 0.876 0.866 2.997 4.260 0.863 0.854

DeTR-3 2.933 4.122 0.876 0.868 3.047 4.286 0.867 0.855

Nested Transformer 3.112 4.392 0.873 0.866 3.234 4.630 0.844 0.850

Ours (w/o CNN) 3.041 4.153 0.873 0.868 3.167 4.335 0.866 0.854

Ours 2.855 3.960 0.881 0.871 2.911 4.010 0.879 0.869

inner Transformer (depth: 6, heads: 8) encoding 2D slices, and

an outer Transformer encoding spatial information (depth: 8,

heads: 12).

All the models were trained from scratch with a initialized

learning rate of 1e-4, and a batch size of 128. The learning

rate is increased to 1e-4 in 200 warmup epochs. The λ was

initialized with 0 and set to 1 when the validation loss had not

been decreased for 50 epochs. Models were trained using a

stable adaptive optimizer, Adam [13], with a L2 weight decay

coefficient = 0.00005, β1 = 0.9, and β2 = 0.999. The best

model was obtained based on the validation loss and an early

stopping criterion was imposed when the validation loss did

not improve for 80 epochs. To reduce the risk of overfitting,

two data argumentation methods were applied during training,

consisting of random rotation and random image shifting. The

rotation angles were between −10° and 10° and the input was

random shifted by between -5 and 5 voxels along every axis

with equal probability. All the experiments are carried out

using Pytorch on 8 NVIDIA-Tesla V100 GPU devices.

IV. RESULTS

The detailed evaluation results are shown in Table. I. The

machine learning method using feature engineering with an

ensemble of XGBoost and LightGBM did not perform as well

as deep learning methods. With the layers getting deep in

ResNet, the performance increases first and remains or even

decreases a bit, where the ResNet-34 achieves the best among

all the ResNet families, with the MAE of 3.204, RMSE of

4.314, PCC of 0.873, and SRCC of 0.869 in the validation

set, and the MAE of 3.334, RMSE of 4.640, PCC of 0.861,

and SRCC of 0.851 in the test set. The design of light

fully convolution model with large number of channels and

dense model with asymmetric convolution achieve promising

and comparable results in CNN models, better than most

Transformer based models. Transformer based model also

achieves promising results, where the DeTR with 2 CNN

blocks performs the best with the MAE of 2.920, RMSE of

4.101, PCC of 0.876, and SRCC of 0.868 in the validation set,

and the MAE of 2.997, RMSE of 4.260, PCC of 0.863, and

SRCC of 0.854 in the test set. With the number of CNN blocks

increasing, the performance reached a plateau with excessive

abstract low-level features.

We show ablation experiments on our proposed GLDN

network without CNN stressing on locality. Although we

excluded the CNN for discarding the localized dependencies,

our design of SPT is better than methods with pure vision

Transformers (ViT, Nested Transformer) for 3D medical image

learning with continuously encoding relationship along differ-

ent axes and achieves the MAE of 3.041, RMSE of 4.153,

PCC of 0.881, and SRCC of 0.871 in the validation set, and

the MAE of 3.167, RMSE of 4.335, PCC of 0.866, and SRCC

of 0.854 in the test set. Compared with CNN models and

Transformer models, the methods (DeTR, GLDN) of using the

CNN and Transformer together for encoding features achieve

the best. Finally, our proposed GLDN generally obtains the

best results with the lowest MAE and the highest PCC

(MAE: 2.855, RMSE: 3.960, PCC: 0.881, SRCC: 0.871 in the

validation set, and MAE: 2.911, RMSE: 4.010, PCC: 0.879,

SRCC: 0.869 in the test set).

V. CONCLUSION

In this paper, the GLDN was proposed to predict individual

brain age based on brain MRI images with Transformer encod-

ing global representations and establishing global dependen-

cies and CNN stressing on locality with local dependencies.

The architecture improves feature diversity and aggregates the

multi-scale information. In our experiments, the combination

of convolutions and Transformer would achieve promising

results among all the models, where our proposed model

achieves the optimal, yielding an MAE of 2.911, RMSE of

4.010, PCC of 0.879, and SRCC of 0.869 on the independent

test set. Overall, we suspect that the coordination between

Transformer and convolution has a great potential for an-

alyzing neuroimaging-based individualized prediction of the

clinical or behavioral phenotype.
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