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ABSTRACT

Existing evaluation metrics for Person Re-Identification
(Person ReID) models focus on system-wide performance.
However, our studies reveal weaknesses due to the uneven
data distributions among cameras and different camera prop-
erties that expose the ReID system to exploitation. In this
work, we raise the long-ignored ReID problem of camera
performance imbalance and collect a real-world privacy-
aware dataset from 38 cameras to assist the study of the
imbalance issue. We propose new metrics to quantify camera
performance imbalance and further propose the Adversarial
Pairwise Reverse Attention (APRA) Module to guide the
model towards learning camera invariant features with a
novel pairwise attention inversion mechanism.

Index Terms— Person Re-identification, Data Imbal-
ance, Adversarial Learning, Attention

1. INTRODUCTION

Person re-identification, also known as Person ReID, deals
with matching images or videos of the same person over
a multiple-camera surveillance system. Although it enjoys
rapid progress, issues remain during the transition to real-
world deployment. For example, the standard metrics applied
on a per-camera basis reveal that certain cameras in the
network systematically under-perform their peers. Such vul-
nerabilities open the system up to exploitation by adversaries
determined to evade it.

In order to quantify the performance imbalance of differ-
ent cameras, we propose two new metrics for camera-specific
evaluation: (1) camera query mean Average Precision (mAP)
and (2) camera gallery mAP, which we shorten to query-
mAP and gallery-mAP respectively. The query-mAP reports
the performance when all query images are from one specific
camera. On the other hand, the gallery-mAP measures the
ease of retrieving positives from a particular camera. Fig-
ure 1 (a) and (c) show the camera-level Person ReID perfor-
mance of a baseline model trained on the Market-1501 [1] and

†Equal contribution.

(a) Distribution of Camera Performance
for Market-1501

(b) Distribution of Camera Performance
for DukeMTMC-reID

Fig. 1. Camera Performance Imbalance Problem in Market-
1501 and DukeMTMC-reID, outlined in red.

DukeMTMC-reID [2] datasets. Cameras 4 in both Market-
1501 and DukeMTMC-reID datasets, outlined in red, lower
the overall performance of the system.

Our proposed Adversarial Pairwise Reversed Attention
(APRA) module leverages a novel pairwise attention inver-
sion mechanism to disentangle camera features from identity
features, utilizing adversarial gradient reversal to further sup-
press camera information. Adding our module to state-of-the-
art methods better balances inter-camera performance on all
four benchmarks studied in this paper.

To summarize, our contributions are as follows: (i) We
identify and quantify inter-camera performance imbalance by
formulating new per-camera metrics. (ii) We contribute a
large-scale outdoor ReID dataset, NTU-Outdoor-38, boast-
ing more cameras than other ReID datasets. (iii) We pro-
pose APRA, a module based on our novel paired attention
inversion mechanism and apply it to state-of-the-art models
to demonstrate better performance balance among cameras.

2. RELATED WORK

Modern Person ReID methods are mostly based on deep con-
volutional neural networks. Early deep learning based work
usually formulated Person ReID as a verification problem and
as a result solutions developed were based on Siamese ar-
chitectures [3, 4, 5]. In recent years, verification-driven ap-
proaches such as [6, 7] evolved from two-stream Siamese
structures to triplet architectures to add robustness to the ver-
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ification system. Another dominant approach is to formulate
the Person ReID problem as a classification task. Zheng et
al.[8] first proposed the ID-discriminative embedding (IDE)
to train an image to person ID mapping using models pre-
trained on ImageNet [9]. Sun et al.[10] optimized the fully
connected (FC) feature corresponding to person IDs with Sin-
gular Vector Decomposition (SVD). Many recent approaches
[11, 12, 13] consist of both classification loss and verification
loss. The latest approaches, such as HA-CNN [14], AANet
[15] and DuATM [16], utilize attention mechanisms to fur-
ther boost the Person Re-ID performance.

Few studies have considered camera-level features and
per-camera performance evaluation. Zhong et al.[17] first dis-
covered that image style variations caused by different cam-
eras affect ReID retrieval results. They proposed a new data
augmentation technique, CamStyle, which uses a CycleGAN
[18] to generate new training images by combining appear-
ance features from one camera and camera-style features from
another camera. Zhang et al.[19] and Zhu et al.[20] train Per-
son ReID models specialized on individual cameras. Unlike
our study, the main motivation behind their work is to reduce
ReID annotation labor by restricting the annotator’s scope to
a single camera.

3. NTU-OUTDOOR DATASET

3.1. Overview of Previous Datasets
Compared to real-world video surveillance systems that
keep track of hundreds of cameras, existing Person ReID
datasets such as Market-1501 [1], DukeMTMC-reID [2] and
MSMT17 [21] contain a limited number (6-15) of cameras.
This is primarily because annotation difficulty increases with
the number of cameras, limiting its scalability. Addition-
ally, most existing ReID datasets capture subjects without
their awareness and consent. This lack of curation has raised
privacy concerns from the public.

3.2. Privacy-Aware Data Collection
To address privacy/consent concerns, we apply a new privacy-
aware data collection strategy during the collection of our new
dataset. We developed a mobile application with functions
for participants to declare consent, log their own appearance
attributes, upload a reference picture of themselves and record
their location over the duration of the data collection exercise
to narrow the annotation window. We only annotate images
belonging to consenting participants and discard images of
other pedestrians.

3.3. Dataset Characteristics
Figure 2 provides some sample images from Market-1501
[1], DukeMTMC-reID [2], MSMT17 [21], and also our
NTU-Outdoor-38 dataset. Market-1501 and MSMT17 used
non-surveillance cameras, resulting in an unrealistic near-
horizontal point of view of subjects.

Market-1501

DukeMTMC-reID

MSMT17

NTU-Outdoor-38

Fig. 2. Comparison of images in Market-1501, DukeMTMC-
reID, MSMT17 and NTU-Outdoor-38.

Dataset NTU-Outdoor-38 MSMT17 DukeMTMC-reID Market-1501
# Cameras 38 15 8 6
# Images 48,347 126,441 36,411 32,668
# Identites 549 4,101 1,812 1,501
Privacy Signed Agreement - - -
Camera Type Surveillance Normal Surveillance Normal
Detector YOLO V3 Faster RCNN DPM DPM
Attribute 40 - 23 30

Table 1. Comparison between NTU-Outdoor-38 and other
Person ReID datasets

In the NTU-Outdoor-38 dataset, images are captured
from actual surveillance cameras mounted on lamp-posts,
better highlighting the viewing angles and imbalances inher-
ent in real-world networked camera systems. It consists of
outdoor scenes with large changes in viewpoint, illumination,
and resolution that manifest even within individual wide-
angle cameras. Our dataset spans 38 cameras, significantly
more than other popular benchmarks. There are 549 appear-
ance identities with signed privacy agreements for using their
images for academic purposes. The NTU-Outdoor-38 dataset
also comes with 40 additional binary attributes annotated
by participants. Table 1 presents the characteristics of the
NTU-Outdoor-38 dataset compared against Market-1501 [1],
DukeMTMC-reID [2] and MSMT17 [21]. NTU-Outdoor-38
captures the inter-camera performance imbalances present in
real-life camera networks and serves as an excellent test-bed
to further study this problem. To the best of our knowledge,
it is the only publicly available Person ReID dataset collected
from over 30 cameras.

4. CAMERA-LEVEL EVALUATION METRICS

We present two new per-camera metrics to evaluate the per-
formance of individual cameras in a ReID system. Query



mAP (q-mAP) is a grouping of the query set by disjoint cam-
era ids: mAPqc = 1

|Qc|
∑
q∈Qc

AP(q,G), where Qc is the set
of query images captured from Camera c, G is the gallery set
and AP is the average precision metric.

Conversely, Gallery mAP (g-mAP) keeps only the posi-
tives from a chosen camera during retrieval, ignoring other
positive candidates from other cameras. This helps us to eval-
uate the ease of retrieving positive gallery candidates from
a chosen camera only. The g-mAP of Camera c is given as
mAPgc = 1

|Qc|
∑
q∈Qc

AP(q,Gq), where Gq is the gallery set
excluding other positives not captured by Camera c and Qc is
the set of queries that have at least one positive in the gallery
from Camera c.

5. PROPOSED METHOD

5.1. APRA Module

Figure 3 illustrates the architecture of our APRA module. The
APRA module is comprised of two key pieces: Pairwise Re-
verse Attention and Adversarial Gradient Reversal. First,
it introduces a new camera classification branch. The in-
put feature is dynamically divided into different branches via
reversed pairwise attention, and we apply adversarial gradi-
ent reversal on the camera branch to encourage learning of
camera-invariant ID features. Our modules can be placed in
between layers of a standard deep convolutional neural net-
work. Based on our experiments, placing the APRA module
in early layers yields the best performance.

5.1.1. Pairwise Reverse Attention
Our APRA module, as shown in Figure 3 divides an input fea-
ture map between person and camera classification branches.
This division is negotiated using attention mechanisms that
operate on the channel and spatial dimensions of the feature
map. Figure 3 visualizes one example of our learned in spatial
attention maps. Our proposed module operates similar to a
“foreground” and “background” separation where it naturally
teaches the model to focus on the subject for id classification
and on the surroundings for camera classification. Our APRA
module performs the same disentanglement along the channel
dimension, which is harder to visualize.

Given a feature map F ∈ RC×H×W , we follow [22] to
derive a RC×1×1 channel attention tensorMc and a R1×H×W

spatial attention tensor Ms. We extend this technique by de-
riving an inverse channel attention M ′c = 1 −Mc and an in-
verse spatial attention M ′s = 1−Ms. The input to the person
branch is given by F ρ = [(F ⊗Mc)⊗Ms+F ]+, where⊗ is
element-wise multiplication with broadcasting. Conversely,
the camera branch output is derived from the reverse atten-
tion maps F κ = [ (F ⊗M ′c)⊗M ′s +F ]+. Thus, our APRA
module exploits reverse attention to generate a separate fea-
ture pathway for the camera classification branch.

Division of input features induces competition between
both pathways, but can also be symbiotic: higher-level se-

mantic features are suitable for person identification, whereas
lower-level style-based features suit camera classification. By
placing APRA among earlier layers of the base model (Fig-
ure 3), we foster cooperation; low-level camera features are
purged upstream, allowing the model to focus on learning id-
relevant high-level features, reducing the tendency to over-fit
and thus balancing performance between cameras.

5.1.2. Adversarial Gradient Reversal
Drawing inspiration from [23], during back-propagation we
reverse the gradients by multiplying all gradients up to the
camera output branch of the APRA module (Figure 3) by a
negative scalar. This adversarial setup encourages the model
to learn camera-invariant features by reducing the tendency to
over-fit to cameras.

5.2. Combined Loss Function

The first loss function we use is cross entropy, LCE =
− 1
n

∑n
i=1 log( pθ(yi|xi) ), where xi are the training images,

yi are the corresponding (either person or camera identity)
ground-truth labels, n is the number of samples in the batch
and θ are the model parameters. The second loss func-
tion is the triplet loss, Ltriplet = 1

|T |
∑
a,p,n∈T [ δθ(a, p) −

δθ(a, n) +m ]+, where T is the set of triplets, δ is a distance
metric and m is a positive margin. The person identity loss
is Lρ = LPersonCE + Ltriplet. The camera identity loss is
Lκ = LCameraCE . Our proposed solution is a combination of
both branch losses, L = Lρ + λLκ. In all our experiments,
the hyperparameter λ = 0.01. Once the model is trained, we
use the embeddings from the person branch.

6. EXPERIMENTS

6.1. Dataset and Setting
We perform comparisons over three of the most popu-
lar benchmarks: Market-1501 [1], DukeMTMC-reID [2],
MSMT17 [21] and our NTU-Outdoor-38 dataset, which we
abbreviate to Market, Duke, MSMT and NTU-38 respec-
tively. The statistics of each dataset are reported in Table 1.
Each dataset gets more challenging as the number of cameras
increases. For system-wide performance evaluation, we adopt
the widely used Rank-1 and mAP scores. For detailed camera
level evaluation, we use our newly proposed query-mAP and
gallery-mAP.

6.2. Performance Evaluation

6.2.1. Camera Performance Evaluation
We evaluate our method’s improvement in camera-specific
performance on Market, Duke, MSMT and NTU-38, using
Q-mAP and G-mAP to denote query-mAP and gallery-mAP,
respectively. As shown in Table 2, the weakest cameras reap
the most improvements in all benchmarks, achieving more
substantial gains compared to other cameras. Also, datasets
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that are more imbalanced by virtue of having more cameras
exhibit a greater rebalancing effect, as shown by the signifi-
cant improvements in MSMT (15 cameras) and NTU-38 (38
cameras).

Dataset Method Weakest Camera Average Camera
Q-mAP G-mAP Q-mAP G-mAP

Market
BagTricks 78.7 74.5 85.4 78.8
+APRA 80.5 76.2 86.6 80.6

RGA 81.6 77.2 87.5 81.5
+APRA 83.1 77.6 88.1 82.5

Duke

BagTricks 64.0 57.5 74.0 70.6
+APRA 68.6 61.0 77.7 74.8

RGA 68.2 61.0 78.2 74.4
+APRA 72.0 63.0 78.6 74.8

MSMT

BagTricks 17.4 20.0 48.4 35.4
+APRA 19.8 21.7 50.0 37.0

RGA 28.0 25.5 51.8 39.0
+APRA 30.5 26.7 52.7 39.2

NTU-38

BagTricks 19.6 8.9 33.3 17.1
+APRA 22.7 11.0 37.1 20.3

RGA 22.9 13.8 38.9 22.0
+APRA 27.2 15.1 39.9 23.0

Table 2. Average and bottleneck scores across datasets.

6.2.2. System-wide Performance Evaluation
The second experiment evaluates our method’s system-wide
performance against state-of-the-art methods in Market and
Duke. For comparison, we select three body-mask guided
methods, MaskGuided [24] ,MaskReID [25] and SPReID
[26], four attention-based methods, DuATM [16], HA-CNN
[14] Mancs [27] and AANet [15], and two GAN-based cam-
era style transfer methods, Camstyle [17] and PN-GAN [28].
To demonstrate the effectiveness of APRA, we used our base-
line BagTricks [13] and RGA [29] with the APRA module
added between their early feature layers. A detailed com-
parison of the state-of-the-art methods is shown in Table 3.
Scores for RGA [29] are lower than reported in the origi-

nal paper as the official open source code was used to train
their models and add APRA. Adding APRA to [13] and [29]
improves their mAP scores, demonstrating that our APRA
module does not sacrifice overall performance.

Type Method Market DukeMTMC
Rank1 mAP Rank1 mAP

Mask-Guided
MaskGuided [25] 83.8 74.3 - -
MaskReID [25] 90.0 75.3 78.8 61.9

SPReID [26] 92.5 81.3 84.4 71.0

Attention-Based

DuATM [16] 91.2 75.7 80.5 63.8
HA-CNN [14] 91.4 76.6 81.2 62.3

Mancs [27] 93.1 82.3 84.9 71.8
AANet [15] 93.9 83.4 84.9 71.8

GAN-Based Camstyle [17] 88.1 68.7 75.3 53.5
PN-GAN [28] 89.4 72.6 73.6 53.2

Global Feature
BagTricks [13] 94.5 85.9 86.4 76.4

BagTricks+APRA 94.7 86.9 87.8 78.2
RGA [29] 95.0 88.4 87.8 78.4

RGA+APRA 95.4 88.7 88.8 78.6

Table 3. Comparison of state-of-the-art methods.

7. CONCLUSIONS

Imbalanced performance among cameras remains an unex-
plored area in Person ReID. To study this, we formulated
new camera-specific evaluation metrics and quantified the
imbalance in popular benchmark datasets. To support our
discovery, we contributed one of few privacy-aware Per-
son ReID datasets that spans over 38 real-world surveillance
cameras with natural imbalance. We designed the Adversarial
Pairwise Reverse Attention (APRA) module, a plug-and-play
component that learns high quality camera-invariant features
to improve overall and bottleneck camera scores. Other fac-
tors like imbalance of training samples or pose variation
across cameras could be interesting topics for further inves-
tigation. We hope that our study encourages exploration into
this nascent space as Person ReID advances into practical
application.
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