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ABSTRACT

Face Presentation Attack Detection (PAD) is an important
measure to prevent spoof attacks for face biometric systems.
Many works based on Convolution Neural Networks (CNNs)
for face PAD formulate the problem as an image-level binary
classification task without considering the context. Alter-
natively, Vision Transformers (ViT) using self-attention to
attend the context of an image become the mainstreams in
face PAD. Inspired by ViT, we propose a Video-based Trans-
former for face PAD (ViTransPAD) with short/long-range
spatio-temporal attention which can not only focus on local
details with short attention within a frame but also capture
long-range dependencies over frames. Instead of using coarse
image patches with single-scale as in ViT, we propose the
Multi-scale Multi-Head Self-Attention (MsMHSA) architec-
ture to accommodate multi-scale patch partitions of Q, K, V
feature maps to the heads of transformer in a coarse-to-fine
manner, which enables to learn a fine-grained representation
to perform pixel-level discrimination for face PAD. Due to
lack inductive biases of convolutions in pure transformers,
we also introduce convolutions to the proposed ViTransPAD
to integrate the desirable properties of CNNs by using con-
volution patch embedding and convolution projection. The
extensive experiments show the effectiveness of our pro-
posed ViTransPAD with a preferable accuracy-computation
balance, which can serve as a new backbone for face PAD.

Index Terms— Video-based transformer, multi-scale
multi-head self-attention, face presentation attack detection

1. INTRODUCTION

Face Presentation Attack Detection (PAD) [1] is an impor-
tant measure to prevent spoof attacks for biometric user au-
thentication when using face biometric systems. Many works
based on Convolution Neural Networks (CNNs) for face PAD
formulate the problem as an image-level binary classification
task to distinguish the bona fide from Presentation Attacks
(PAs) [2, 3].
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Fig. 1: The short/long-range spatio-temporal attention of the
proposed ViTransPAD, which can not only focus on local spa-
tial details with short attention within a frame but also capture
long-range temporal dependencies over frames.

The image-based methods are simple and high-efficient.
Nevertheless, these methods neglect the context information
being useful to improve the generalization performance of
face PAD models [4]. Due to the limited receptive field, 3D
convolution-based face PAD [5] also suffers from difficulty in
learning long-range dependency.

Alternatively, Vision Transformers (ViT) [6] using self-
attention to attend the global context of an image is becoming
a new mainstream in face PAD [7, 8]. However, ViT is also in-
capable to model the long-range dependencies over all frames
in a video [9].

Inspired by ViT, we propose a Video-based Transformer
for face PAD (ViTransPAD) with short/long-range spatio-
temporal attention, which can not only focus on local spatial
details with short attention within a frame but also model
long-range temporal dependencies over frames (see Figure 1).
The visualisation of attention maps (in Section 4.5) shows that
the proposed ViTransPAD based on short/long-range depen-
dencies can gain a consistent attention being less affected by
the noise. Instead of factorizing the spatio-temporal atten-
tion [9], we jointly learn spatio-temporal dependencies in our
ViTransPAD.

Due to the use of coarse image patches with a single in-



put scale, it is difficult to directly adapt the vanilla ViT to the
pixel-level dense prediction tasks such as object detection and
segmentation [10] as well as face PAD. To address this prob-
lem, we propose the Multi-scale Multi-Head Self-Attention
(MsMHSA) architecture to support partitioned multi-scale
patches from Q, K, V feature maps to different heads of
transformer in a coarse-to-fine manner, which allows to learn
a fine-grained representation to perform pixel-level discrim-
ination required by face PAD. Rather than hierarchically
stacking multiple transformers as in [10], we simply imple-
ment MsMHSA in a single transformer to attain a preferable
computation-accuracy balance.

Nevertheless, the pure transformers such as ViT lack some
of the inductive biases of convolutions requiring more data to
train the models [11] which is not suitable to face PAD train-
ing on relative small datasets [12, 13, 14, 15]. To address
this problem, we introduce convolutions to our ViTransPAD
to tokenise video and employ convolutional projection rather
than linear projection to encode Q, K, V feature maps for self-
attention. The integrated CNNs force to capture the local spa-
tial structure which allows to drop positional encoding being
crucial for pure transformers.

To summarize, the main contributions of this work are: 1)
The design of a Video-based Transformer for face PAD (ViT-
ransPAD) with short/long-range spatio-temporal attention. 2)
A Multi-scale Multi-Head Self-Attention (MsMHSA) imple-
mented on single transformer allowing to perform pixel-level
fine-grained classification with good computation-accuracy
balance for face PAD. 3) The introduction of convolutions to
proposed ViTransPAD to integrate desirable proprieties. 4)
To the best of our knowledge, this is the first approach using
video-based transformer for face PAD. The superior perfor-
mance demonstrates that the proposed ViTransPAD can serve
as an effective new backbone for face PAD.

2. RELATED WORKS

Face presentation attack detection. Traditional face PAD
methods usually extract hand-crafted descriptors from the fa-
cial images to capture the different clues such as liveness
clues (including remote photoplethysmography (rPPG)), tex-
ture clues and 3D geometric clues to defend against photo
print/video replay/3D masks attacks [16]. Then, deep learn-
ing based methods using CNNs learn the representations of
different clues from the images to distinguish the bona fide
from PAs [3, 17]. Recently, ViT using self-attention is be-
coming a new mainstream in face PAD [7] due to their strong
semantic representation capacities to detect PAs. Some meth-
ods based on 3D CNNs [5] or 2D CNNs [4, 18, 19] with aux-
iliary plugging components try to model long-range depen-
dencies for face PAD. However, the limited receptive field of
3D CNNs hinders its capacity to learn long-range context.
Vision transformers. The first work to introduce Trans-
former [20] to vision domain is Vision Transformers(ViT) [6].

Thanks to self-attention, ViT and the variants [21, 22] show
their superiority in image classification and in downstream
tasks [23]. However, these image-based vision transformers
only consider the spatial attention in a frame without inte-
grating temporal attention over frames. ViViT [9] model the
long-range dependencies over frames with pure transform-
ers. In order to introduce inductive bias of convolutions in
pure transformers, [11] propose to use embedded convolu-
tion patches. Multi-scale patches are applied in hierarchical
stacking transformers [10] to adapt vanilla ViT to pixel-level
dense prediction tasks. In this work, we design a simple
MsMHSA architecture within a single video-based trans-
former allowing pixel-level fine-grained discrimination to
satisfy the requirement of face PAD.

3. METHODOLOGY

3.1. Overall Architecture

An overview of the proposed ViTransPAD is depicted in Fig-
ure 2 (a). Unlike hierarchical stacking transformers using
multi-scale patches in [10], we only use a single transformer
to apply the multi-scale self-attention with different heads in
each layer of transformer.
Convolutional token embedding (CTE). Instead of parti-
tioning each frame into patches and then tokenize patches
with linear projection layer, we introduce a convolutional
layer to tokenize each frame without partition. Given an in-
put video Xin of size T × 3 × H × W , the obtained token
map is Xm ∈ RT×Cm×Hm×Wm , where T is the number of
frames.
Convolutional projection (CP). As well as CTE, we use
convolutional projection rather than linear projection to en-
code Q/K/V ∈ RT×CA×HA×WA feature maps.

Then the obtained Q, K and V are fed into the proposed
Multi-scale Multi-Heads Self-Attention (MsMHSA) module
to learn the short/long-range dependencies over frames in a
video. The details are described in Section 3.2. Finally, we
add Feed-Forward Network (FFN) with Norm layers at the
end of transformer. In this work, linear projection layers in
FFN are also replaced by convolution layers. As in ViT, an
MLP Head is connected to the transformer to generate the
classification embeddings Z for face PAD. Given an input
video Xin, the proposed ViTransPAD can be described as:

Xm = CTE(Xin) (1)

Q,K,V = CP(Xm) (2)

H = MsMHSA(Q,K,V) (3)

Y = H+Xm (4)

Z = MLP(FFN(Norm(Y)) +Y) (5)
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Fig. 2: (a) Overall architecture of the Video-based Transformer for face PAD (ViTransPAD). (b) The proposed Multi-scale
Multi-Head Self-Attention (MsMHSA) module in our ViTransPAD.

3.2. Multi-scale Multi-Head Self-Attention (MsMHSA)

The goal of MsMHSA, as shown in Figure 2(b), is to in-
troduce a pyramid structure into the self-attention module
to generate multi-scale feature maps which can be used for
pixel-level fine-grained image discrimination required by face
PAD. The proposed MsMHSA is applied on different heads
of each layer of our transformer. All the heads share the
similar protocol to calculate the self-attention. In particular,
the feature maps Q/K/V are equally divided to each head
along the dimension before inputting them to MsMHSA.

Given a transformer with three heads fed by an input fea-
ture maps Q/K/V of size T ×CA ×HA ×WA, the feature
maps for each head are Qi/Ki/Vi ∈ RT×CA

3 ×HA×WA . For
the first head Head1, we take a full-size patch q1/k1/v1 ∈
RT×CA

3 ×HA×WA to calculate a global self-attention feature
map for the first head Head1. We can obtain the self-attention
feature map h1 ∈ RT×CA

3 ×HA×WA of Head1. Then for
Head2, we divide Q2/K2/V2 into 22 patches, each patch
q2/k2/v2 of size T × CA

3 × HA

2 × WA

2 . We obtain the self-

attention feature map h2 ∈ RT×CA
3 ×HA

2 ×WA
2 of Head2.

We continue to divide Q3/K3/V3 into 42 patches to cal-
culate the self-attention feature map h3 ∈ RT×CA

3 ×HA
4 ×WA

4

of Head3. Finally, we concatenate the obtained self-attention
feature maps {h1,h2,h3} to generate the final multi-scale
attention feature map H ∈ RT×CA×HA×WA in layer Li (We
need to reshape h2,h3 to be consistent with h1):

H = Concat(h1,Reshape(h2),Reshape(h3)). (6)

The self-attention feature map hi is given by:

hi = ΣN
mΣN

n Softmax(
qi,mkT

i,n√
dheadi,n

)vi,n, (7)

where i is corresponding to the ith head Headi, qi,m

is the mth patch partitioned from feature map Qi for the
ith head Headi, ki,n/vi,n are the nth patches partitioned
from feature maps Ki/Vi for the ith head Headi, then,
qi,m/ki,n/vi,n ∈ R

CA
3 ×WA

l ×WA
l , l ∈ [1, 2, 4]. and N is the

total number of patches of ith head, i.e., N = T × l2, l ∈
[1, 2, 4]. dheadij

is the dimension of the qi,m. For each head
Headi, we stack the partitioned patches qi/ki/vi from all
frames of a video together to calculate the self-attention fea-
ture map of the video (see Figure 2(b)), thus the self-attention
of each head Headi always considers simultaneously the
short attention focusing on local spatial information when
qi,m/ki,n from the same frame of a video (see the red dotted
line in Figure 1 denoting the short attention) and long at-
tention capturing spatio-temporal dependencies over frames
when qi,m/ki,n from the different frames (see the violet
dotted line Figure 3 denoting the long-range attention) . We
can also jointly learn the spatio-temporal attention in a uni-
fied framework without learning the spatio-temporal attention
independently as in [9].

3.3. Loss function for face PAD

Instead of adding a classification token to learn the represen-
tation of image as in ViT, we learn the representation of video
based on all patch tokens without adding an extra classifica-
tion token. In practice, the output of MLP Head servers as



the classification embedding Z in this work (see Figure 2).
Then, the learned embedding Z is input in the cross-entropy
loss function to train our model:

L(Z; Θ) =

K∑
k=1

−yklogP (yk = 1|Z,Θ) (8)

where Θ are the parameters of model to be optimized and K
is the number of categories, i.e., K = 2, which is the classes
for face PAD being either bonafide or attack.

4. EXPERIMENTS

4.1. Datasets and setup

Datasets OULU-NPU (O) [12], CASIA-MFSD (C) [15],
Idiap Replay Attack (I) [14] and MSU-MFSD (M) [13] are
used in our experiments. Attack Presentation Classification
Error Rate (APCER), Bona Fide Presentation Classifica-
tion Error Rate (BPCER), Average Classification Error Rate
(ACER) [20] and Half Total Error Rate (HTER) [21] are used
as evaluation metric in the intra/cross-datasets tests. In intra-
dataset test, we follow the evaluation protocols of Oulu-NPU
as in [12]. In cross-datasets test, we conduct the evaluation on
four datasets OULU-NPU (O), CASIA-MFSD (C), Idiap
Replay Attack (I) and MSU-MFSD (M). We follow the
OCIM protocols proposed in [24] for cross-datasets test in
which we randomly choose three of four datasets as source
datasets for training the model, and the remaining one is set
as the target domain to evaluate the model. So, we have four
experimental modes: ‘O&C&I’ to ‘M’, ‘O&M&I’ to ‘C’,
‘O&C&M’ to ‘I’, ‘I&C&M’ to ‘O’.

4.2. Implementation Details

All models are trained on 3 RTX 6000 GPUs with an ini-
tial learning rate of 1e-5 for 200 epochs following the co-
sine schedule (50 epochs for warmup). Adam optimizer and
a mini-batch size of 16 videos (8 frames per video sampled
uniformly or with random interval) are applied during train-
ing. Data augmentations including horizontal flip and color
jitter are used. 224x224 facial images cropped by MTCNN
[25] are used for both training and testing models.

4.3. Ablation study

All ablation studies are conducted on the Protocol-2 (differ-
ent displays and printers between training and testing sets) of
OULU-NPU dataset unless otherwise specified.
Effectiveness of convolutions in transformer. demon-
strates a good computation-accuracy balance (ACER 1.19%
with GFLOPs 7.88) comparing to the pure CNNs or trans-
former (ViT/ViT(P)), which shows the effectiveness in intro-
ducing convolutions into transformers for face PAD. Compar-
ing to convolutional token embedding, ViT is less effective

Table 1: Ablation study on effectiveness of convolutions in-
troduced in transformer (P- Pretrained, T-Transformer).

Model APCER(%) BPCER(%) ACER(%) #GFLOPs #Params
CNN 5.43 1.08 3.26 0.63 65M
CNN (P) 2.12 3.30 2.71 0.63 65M
Vit 10.30 4.20 7.25 55.5 86M
Vit (P) 2.38 0.76 1.57 55.5 86M
Vit+T 11.32 6.67 8.99 134.39 87M
Vit (P)+T 5.82 0.94 3.38 134.39 87M
CNN+T 14.60 7.12 10.86 7.88 66M
CNN (P)+T 1.98 0.40 1.19 7.88 66M

Table 2: Ablation study on the proposed Multi-scale MHSA.

28*28 14*14 7*7 ACER(%)√
2.81√
2.60√
2.32√ √
1.19√ √
2.06√ √
2.12√ √ √
2.30

for tokenizing patches (see ViT+T/ViT(P)+T). The compari-
son experiments also show that the pretraining (denoted as P)
is quite important for face PAD especially for the transformer-
based architectures.

Effectiveness of multi-scale MHSA. From Table 2, we can
see that all of the results using multi-scale patches are bet-
ter than the ones using single-scale patch. The best result is
achieved when using multi-scale patches of size 28× 28 and
14 × 14. However, the performance degrades when apply-
ing all three patches, which may be due to the overfitting on
relative small dataset.
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Fig. 3: Study on short/long-range spatio-temporal attention.

Short/long-range spatio-temporal attention. From Fig-
ure 3, we can see that the short spatial attention within an
image within an image (the start of the grey curve) performs
much worse than long spatio-temporal attention over frames
spanning a video of 4 seconds in terms of ACER for face
PAD. The more frames we use the better performance we
gain until the length of video attains 4 seconds. This shows
that the model strongly over-fitted the noise when the video
is long (25fps×4s).



Table 3: The results of the evaluation on the OULU-NPU
dataset. Best results are marked in bold and second best in
underline.

Prot. Method APCER(%) BPCER(%) ACER(%) ↓

1

Auxiliary [17] 1.6 1.6 1.6
SpoofTrace [2] 0.8 1.3 1.1
FAS-SGTD [4] 2.0 0.0 1.0

CDCN [26] 0.4 1.7 1.0
DC-CDN [3] 0.5 0.3 0.4

ViTransPAD (Ours) 0.4 0.2 0.3

2

Auxiliary [17] 2.7 2.7 2.7
SpoofTrace [2] 2.3 1.6 1.9
FAS-SGTD [4] 2.5 1.3 1.9

CDCN [26] 1.5 1.4 1.5
DC-CDN [3] 0.7 1.9 1.3

ViTransPAD (Ours) 2.0 0.4 1.2

3

Auxiliary [17] 2.7±1.3 3.1±1.7 2.9±1.5
SpoofTrace [2] 1.6 ±1.6 4.0±5.4 2.8±3.3
FAS-SGTD [4] 3.2±2.0 2.2±1.4 2.7±0.6

CDCN [26] 2.4±1.3 2.2±2.0 2.3±1.4
DC-CDN [3] 2.2±2.8 1.6±2.1 1.9±1.1

ViTransPAD (Ours) 3.1±3.0 1.0±1.3 2.0±1.5

4

Auxiliary [17] 9.3±5.6 10.4±6.0 9.5±6.0
CDCN [26] 4.6±4.6 9.2±8.0 6.9±2.9

FAS-SGTD [4] 6.7±7.5 3.3±4.1 5.0±2.2
DC-CDN [3] 5.4±3.3 2.5±4.2 4.0±3.1

SpoofTrace [2] 2.3±3.6 5.2±5.4 3.8±4.2
ViTransPAD (Ours) 4.4±4.8 0.2±0.6 2.3±2.4

Table 4: The results of cross-dataset testing protocol
on OULU-NPU, CASIA-MFSD, Replay-Attack, and MSU-
MFSD.

Method O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER(%) HTER(%) HTER(%) HTER(%)

Color Texture [27] 28.09 30.58 40.40 63.59
LBP-TOP [28] 36.90 42.60 49.45 53.15

Auxiliary(Depth) [17] 22.72 33.52 29.14 30.17
MMD-AAE [29] 27.08 44.59 31.58 40.98

MADDG [24] 17.69 24.5 22.19 27.98
MDRL [30] 17.02 19.68 20.87 25.02

SSDG-M [31] 16.67 23.11 18.21 25.17
ANRL [25] 10.83 17.85 16.03 15.67

ViTransPAD w/o A (Ours) 16.80 21.27 18.50 20.80
ViTransPAD w/A (Ours) 8.39 23.12 16.83 15.63

4.4. Intra-/cross-dataset Testing

Table 3 and Table 4 compare the performance of our method
with the state-of-the-art methods on OULU-NPU [12] and
cross-dataset [24] protocols. We can see that our proposed
method ranks first on most protocols of OULU-NPU (i.e.,
Protocols 1, 2, and 4) and the ‘O&C&I to M’, ‘I&C&M to
O’ of cross-dataset testing (‘O&C&M to I’ is the second best
closing to the first). Please note that our ViTransPAD can
be also integrated in the framework of meta-learning as used
in ANRL [25] to further improve the cross-dataset generaliza-
tion ability. The superior performance shows that our ViTrans
can server as an effective new backbone for face PAD.

4.5. Visualization

Due to lack the long-range spatio-temporal dependencies over
frames, the short-range attention within a frame is vulnerable
to the noise which results its attention maps are less consistent

than the ones of long-range attention either for the liveness or
attacks detection as shown in Figure 4. For instance, the up-
per row of (a) shows that the long-range attention always fo-
cus on the left half faces for liveness detection. However, the
first attention map of short-range attention (the bottom row
of (a)) attends the hairs on the forehead but the succeeding
frames switch to focus on the left half faces. The same results
can be also observed in the attacks detection as shown in (b).

(a) Liveness (b) Attack

Fig. 4: Attention maps obtained by GradCAM [32]. Upper
row illustrates attention maps of long-range attention over
frames and the bottom row shows the ones of short-range at-
tention within a frame.

5. CONCLUSION

We design a Video-based Transformer for face PAD with
short/long-range spatio-temporal attention which can not
only focus on local details but also the context of a video. The
proposed Multi-scale Multi-Head Self-Attention enables the
model to learn a fine-grained representation to perform pixel-
level discrimination required by face PAD. We also introduce
convolutions to our ViTransPAD to integrate desirable propri-
eties of CNNs which can gain a good computation-accuracy
balance. To the best of our knowledge, this is the first ap-
proach using video-based transformer for face PAD which
can serve as a new backbone for further study.
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“Training data-efficient image transformers & distilla-
tion through attention,” in ICML, 2021.

[23] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai, “Deformable detr: Deformable
transformers for end-to-end object detection,” arXiv
preprint arXiv:2010.04159, 2020.

[24] Rui Shao et al., “Multi-adversarial discriminative deep
domain generalization for face presentation attack de-
tection,” in CVPR, 2019.

[25] Shubao Liu, Ke-Yue Zhang, Taiping Yao, Mingwei Bi,
Shouhong Ding, Jilin Li, Feiyue Huang, and Lizhuang
Ma, “Adaptive normalized representation learning for
generalizable face anti-spoofing,” in ACM MM, 2021,
pp. 1469–1477.

[26] Zitong Yu et al., “Searching central difference convolu-
tional networks for face anti-spoofing,” in CVPR, 2020.

[27] Zinelabidine Boulkenafet et al., “Face spoofing detec-
tion using colour texture analysis,” IEEE TIFS, 2016.

[28] Tiago de Freitas Pereira et al., “Face liveness detection
using dynamic texture,” EURASIP Journal on Image
and Video Processing, 2014.

[29] Haoliang Li et al., “Domain generalization with adver-
sarial feature learning,” in CVPR, 2018.

[30] Guoqing Wang et al., “Cross-domain face presentation
attack detection via multi-domain disentangled repre-
sentation learning,” in CVPR, 2020.

[31] Yunpei Jia et al., “Single-side domain generalization for
face anti-spoofing,” in CVPR, 2020.

[32] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra, “Grad-cam: Visual explanations from deep net-
works via gradient-based localization,” in ICCV, 2017.


	 Introduction
	 Related works
	 Methodology
	 Overall Architecture
	 Multi-scale Multi-Head Self-Attention (MsMHSA)
	 Loss function for face PAD

	 Experiments
	 Datasets and setup
	 Implementation Details
	 Ablation study
	 Intra-/cross-dataset Testing
	 Visualization

	 Conclusion
	 References

