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ABSTRACT
Writer independent offline signature verification is one of the
most challenging tasks in pattern recognition as there is often
a scarcity of training data. To handle such data scarcity prob-
lem, in this paper, we propose a novel self-supervised learn-
ing (SSL) framework for writer independent offline signature
verification. To our knowledge, this is the first attempt to uti-
lize self-supervised setting for the signature verification task.
The objective of self-supervised representation learning from
the signature images is achieved by minimizing the cross-
covariance between two random variables belonging to differ-
ent feature directions and ensuring a positive cross-covariance
between the random variables denoting the same feature di-
rection. This ensures that the features are decorrelated lin-
early and the redundant information is discarded. Through
experimental results on different data sets, we obtained en-
couraging results.

Keywords - Self-supervised, Cross-covariance, Decorre-
lation, Writer-independent, SVM

1. INTRODUCTION

Signature verification has been used as one of the most es-
sential steps for identity verification of person-specific docu-
ments like forms, bank cheques, or even the individual them-
selves. This makes signature verification an important task
in domain of computer vision and pattern recognition. There
are mainly two types of signature verification processes: (1)
offline and (2) online. In offline signature verification, the
input is basically a 2D image which is scanned from the orig-
inal signature or captured into an image by some electronic
device. Whereas, in online signature verification, the writer
usually pens down his signature on an electronic tablet us-
ing a stylus and the information is recorded at some regular
timestep along with the position of the stylus.

Offline signature verification can again be divided into
two types: (1) Writer dependent and (2) writer independent.
In writer dependent scenario, the system needs to be updated
and retrained for every new user signature that gets added to
the system. This makes the process cumbersome and less fea-
sible. However, in writer independent scenario, a generalized
system needs to be built which can differentiate between gen-
uine and forged signatures without repeated retraining.

Most researchers have leveraged supervised learning
methods [1–6] for offline signature verification. While hand-
crafted feature analyses have comprised the bulk of studies in
this domain [6–9], various deep learning-based methods have
also been proposed, particularly dwelling on metric learn-
ing approaches [1–4]. Nevertheless, all the aforementioned
works are fully supervised methods and therefore, share the
common bottleneck of data scarcity. To this end, we demon-
strate the first use of self-supervision for offline signature
verification.

Self-supervised learning aims at developing a pre-training
paradigm to learn a robust representation from an unlabelled
corpus for generalization to any given downstream task.
Widely studied in recent years, several pretext tasks have
been proposed, such as solving jigsaw puzzles [10], image
colorization [11] to name a few. Contrastive learning based
self-supervised algorithms, like SimCLR [12], MoCo [13]
has also gained popularity, which aim at learning similarity
between augmented views of the same image while distanc-
ing views from different images. [14] aimed at simultaneously
maximizing similarity and minimizing redundancy between
embeddings of two distorted views of an image.

In this work, we propose a self-supervised learning al-
gorithm for offline writer-independent signature verification.
Self-supervised learning is a sub-domain of unsupervised
learning that aims at learning representations from the data
without any ground truth or human annotations. As a skilled
forgery is supposed to be very close to the genuine signature,
it is necessary to distinguish between each constituting ele-
ment of the signatures for correct classification. However,
since it is not possible to obtain a large number of annotated
genuine signatures from the individuals for training a large
model, we use self-supervised learning for training the model
to learn representations which are generalized for signatures
over a large number of individuals. This work is the first of its
kind to apply self-supervised learning framework for learning
representations from signature images. Also, in the down-
stream stage, we do not use any siamese type architecture
in the downstream task for the offline signature verification,
and show the capability of the pretrained encoder to effec-
tively cluster the genuine signatures of the different unknown
writers.

The main contributions of this work are as follows:
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• A novel self-supervised approach is introduced here
for offline writer independent signature verification
purpose.

• To the best of our knowledge, this is the first work of the
use of self-supervised learning in signature verification.

• We have shown that the proposed SSL is better than the
state-of-the art self-supervised contrastive learning ap-
proaches used in Computer vision and Medical image
analysis areas.

The rest of the paper is organized as follows. Sec. 2 de-
scribes the self-supervised learning methodology that is used
in this work. Sec. 3 presents the details about the datasets we
use. In Sec. 4, we present the experimental results and the
comparison with the base models. Finally, we conclude the
paper in Sec. 5.

2. METHODOLOGY

In this section, we discuss the pre-processing and the algo-
rithm steps that are used to train the proposed encoder.

2.1. Pretraining Methodology

In signature images, it is essential to capture the stroke in-
formation from the different authors as well as to learn the
variations in the signatures of the same individual. To feed
the stroke information without any human supervision, we di-
vided the signature images into patches of dimensions 32×32
with an overlap of 16 pixels from a signature image reshaped
to 224 × 224. This gives 169 patches from a single image of
dimensions 32× 32. As the base encoder we choose ResNet-
18 [15]. When the patches are passed through the encoder, we
obtain an output of 1×1×512 from each patch. We rearrange
the patches into a grid of 13× 13 to obtain an output of shape
13×13×512. After applying global average pooling (GAP),
we obtain an output feature vector of dimension 1×512. This
feature vector is then passed through a non-linear projector
with 1 hidden layer and output dimension 512 to obtain the
final output.

For forming positive pairs, we augment a single signa-
ture image in two randomly chosen augmentations. The aug-
mentation details are mentioned in Sec. 3.2. The images are
then divided into patches as mentioned before and then passed
through the encoder and the projector.

Thus, the proposed loss function has the form:
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where zik is a scalar value at i-th dimension of the k-th
centered and normalized feature vector zk. Thus, the pre-
processing steps before feeding the feature vector zik to the
loss function are as follows
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k)

2
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1
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It is to be noted that zik and z′ik are obtained from the each
element of a positive pair. Thus, the proposed loss function
does not optimize the terms of a cross-covariance matrix in
the true meaning of the term. We can refer to this matrix as a
Pseudo cross-covariance matrix.

From eq. 1, we can see that optimizing the proposed loss
function allows us to decorrelate the dimensions of the out-
put. We treat each dimension as a random variable Zi. As
Zi is the output feature vector from the last Batch Normal-
ization layer in the projecto, Zi ∼ N (0, 1). Normalizing Zi

and subtracting mean along each dimension in Eqn. 2, bring
the feature vectors inside an unit hyper-sphere SD, where D
is the dimension of the feature vector, and centers each di-
mension at 0, i.e., Zi ∼ N (0, σ2

i ). Since, we are making the
cross-covariance matrix to an Indentity matrix,

Cov(Zi, Zj) = 0⇒ ρ = 0 (3)

For Normal Random Variables Zi,

E[Zi, Zj ] = E[Zi].E[Zj ] ∀i, j ∈ [1, D] ∧ i 6= j (4)

The diagonal terms of the cross-covariance matrix are opti-
mised such that it equates to 1. Hence, the PDF of the feature
vectors fZ1,..,ZD

∼ N (0, ID×D). Consequently, each output
dimension becomes independent.

2.2. Pretraining Model Architecture

The model architecture used in the pretraining phase is given
in Figure 1. The diagram shows the input that is fed to the
ResNet18 [15] encoder. The input is reshaped to 169× 32×
32 × 3 before passing it through the encoder. Figure 1 also
shows an example of the input used in the pretraining phase.

2.3. Downstream Evaluation

For predicting whether a signature is forged or genuine, we
take 8 reference signature for each user and use them to train
a Support Vector Machine (SVM) classifier with radial basis
function kernel. We assume that the user for which the sig-
nature is being verified is known. We also assume that the
forged signature will be mapped outside the decision bound-
ary of that particular user. If the user is predicted correctly and



Fig. 1: Model architecture used in the pretraining phase of the
proposed method.

the signature is genuine, we count it as a correct prediction.
Similarly, if the predicted user is not correct and the signature
is actually forged, then also it is counted as a correct predic-
tion. In all the other cases, the prediction is considered as
wrong.

By using a SVM classifier, we depend on the feature ex-
traction capability of the pretrained encoder to express the in-
put in terms of its linearly decorrelated factors. Whereas all
the contemporary state-of-the-art supervised algorithms use
siamese type architecture or supervised contrastive learning
framework for the offline signature verification task.

3. EXPERIMENTAL DETAILS

In this section, we are going to discuss the details of the
datasets that were used in our experiments, and the con-
figurations used for training our encoder in the pretext (or
pretraining) task.

3.1. Datasets

In this work, we used two datasets, namely, BHSig260 [17]
and ICDAR 2011 [16]. BHSig260 dataset contains signatures
from 100 writers for Bengali and 160 writers for Hindi signa-
tures. For each writer of both the languages, there are 24 gen-
uine and 30 forged signatures. Among the 100 writers in the
Bengali subset, we randomly select 50 writers for the training
set and the rest 50 are used for testing. For the Hindi subset,
we randomly selected 50 writers for self-supervised pretrain-
ing and the rest 110 writers were left for testing. Similarly,
for ICDAR 2011 Signature Verification dataset, there are sig-
natures for Dutch and Chinese languages. The subset of the
Dutch signatures contains signatures from 10 writers for train-
ing and 54 writers for testing. In the test set, however, there
are 8 reference genuine signatures for each writer. To adhere
to this structure, we randomly selected 8 genuine signatures
from the test set of BHSig260 dataset for each writer and used
it as the reference set, for both Bengali and Hindi languages.

3.2. Pretraining Experiments Configuration

For the pretraining phase, we used different number of epochs
for different datasets. The models were trained by optimizing
the loss function given by 1 using LARS [19] optimizer. We

Fig. 2: t-SNE visualisations obtained by (a) the proposed
method compared with those obtained by (b) SimCLR [12]
on different datasets. The color coding scheme denotes each
writer cluster. .

used a learning rate of 0.1 and a momentum value of 0.9. The
batch-normalization and bias parameters were excluded from
weight normalization. We decayed the learning rate following
a cosine decay schedule with a linear warmup period of 10
epochs at the start. The decay was scheduler for 1000 epochs
irrespective of the number of training epochs.

For the ICDAR datasets, we pretrained the model for 500
epochs. Whereas for the BHSig260 dataset, the pretraining
was carried out for 200 epochs only. For both the datasets,
the batch size used was 32.

To ensure that the pretrained models learn generalized and
robust features, we applied several augmentations, such as,
color jittering, affine transformation and random cropping to
224 × 224. The images obtained after augmentation were
normalized to the range [−1.0,+1.0].

As not all images in the datasets contain perfectly cropped
signature images, we cropped the images such that the input
to the encoder contained is a tightly bounded signature im-
age. To achieve this objective, we performed Otsu’s thresh-
olding [20] followed by finding the bounding box with least



Table 1: Comparison of the proposed method with state-of-the-art self-supervised learning baselines.

Method ICDAR 2011 Dutch [16] ICDAR 2011 Chinese [16] BHSig260 Bengali [17] BHSig260 Hindi [17]
Accuracy (%) FAR FRR Accuracy (%) FAR FRR Accuracy (%) FAR FRR Accuracy (%) FAR FAR

SimCLR [12] 69.46 0.554 0.060 59.76 0.431 0.317 73.45 0.117 0.543 72.45 0.103 0.599
Proposed 77.62 0.316 0.133 64.68 0.278 0.583 72.04 0.367 0.116 72.43 0.104 0.598

Table 2: Comparison of the proposed method with supervised
learning methods in literature.

Method BHSig260 Bengali [17] BHSig260 Hindi [17]
Accuracy (%) FAR FRR Accuracy (%) FAR FRR

Pal et al. [17] 66.18 0.3382 0.3382 75.53 0.2447 0.2447
Dutta et al. [18] 84.90 0.1578 0.1443 85.90 0.1310 0.1509

Dey et al. [2] 86.11 0.1389 0.1389 84.64 0.1536 0.1536
Alaei et al. [7] – 0.1618 0.3012 – 0.1618 0.3012

Proposed 72.04 0.367 0.116 72.43 0.104 0.598

area containing all non-zero pixels around the centre of mass
of the image. After this preprocessing step, the images were
divided into patches of dimension 32× 32 with an overlap of
16 pixels and fed to the encoder for training.

4. EXPERIMENTAL RESULTS

4.1. Downstream Results

The downstream task we considered in our work is the writer-
independent classification of signatures into two classes: gen-
uine or forged. The predictions were obtained using the pro-
cedure described in Section 2.3. The results obtained by the
proposed model in the downstream task on the datasets IC-
DAR 2011 and BHSig260 signature verification datasets are
given in Table 1. We also pre-trained and validated our pro-
posed method on GPDS300 [21] and CEDAR [22] dataset,
and we achieved accuracies of 69.28% and 83.8%, respec-
tively.

4.2. Ablation on Hyperparameters

We tested the robustness of the representations learnt by our
proposed model using Gaussian noise(AWGN) with µ = 0.0,
σ2 = 0.01 and obtained accuracy(ACC), FAR and FRR of
76.84%(σ = 0.26533), 0.3242(σ = 0.005) and 0.17(σ =
0.003), respectively for the CEDAR dataset. Using Random
cropping, we obtained ACC, FAR and FRR of 79.3%(σ =
0.94), 0.344(σ = 0.0124) and 0.1157(σ = 0.0128), respec-
tively. We also consider ablation on projector depth, augmen-
tation and patch overlap on the CEDAR dataset. Increas-
ing the overlap of patches from 0 to 8 pixels shows accu-
racy(ACC), FAR and FRR of 83.8%, 0.118 and 0.187, re-
spectively. Increasing the number of layers in the projector
did not improve the performance. Removing color jitter as
augmentation from the above model yielded ACC, FAR and
FRR of 83.1%, 0.11 and 0.19, respectively.

4.3. Comparison with SOTA Self-supervised Algorithms

In this section, we show how the proposed loss function fares
at training the encoder to learn representations from the data.
As shown in Table 1, in spite of trained in a self-supervised
manner, the proposed framework performs satisfactorily on
both the multilingual datasets. Table 1 also presents the com-
parative results of one of the state-of-the-art self-supervised
algorithm (SimCLR) on the same data. From Fig. 2, we can
see that the proposed algorithm performs better at produc-
ing distinct clusters for ICDAR 2011 Chinese and BHSig260
Bengali dataset, whereas the plots for ICDAR 2011 Dutch and
BHSig260 Hindi datasets look equally well-clustered for both
the proposed model and SimCLR. It should be mentioned
here that the SimCLR algorithm was trained for 1000 epochs
on the ICDAR 2011 dataset (both, Dutch and Chinese).

4.4. Comparison with Supervised Methods

To further validate our proposed self-supervised pipeline, we
compare its performance with some fully supervised methods
in literature. The results have been tabulated in Table 2. We
observe that the proposed framework performs competitively
against the fully supervised works on the BHSig260 datasets,
outperforming [17] by a large margin on the Bengali signature
dataset. Moreover, the low FAR and FRR values obtained by
the proposed method on the signature datasets affirm its po-
tential in separating forged signatures from the genuine ones.

5. CONCLUSION

In this work, we proposed a self-supervised representation
learning framework where a novel loss function is used that
aims at decorrelating the dimensions from each other to dis-
card redundant features and encourage learning of linearly un-
correlated generative features of the input. Through t-SNE
plots we show that the proposed algorithm extracts better un-
correlated information from the input than the SOTA SSL
methods on the same datasets. From the comparative results,
it is evident that the proposed method performs better than or
at par with the state-of-the-art algorithm SimCLR. This work
shows the extensive scope and applicability of the proposed
method in the field of signature verification and paves a way
for further research in this direction.
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