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ABSTRACT

Few-shot learning aims at recognizing new instances from
classes with limited samples. This challenging task is usu-
ally alleviated by performing meta-learning on similar tasks.
However, the resulting models are black-boxes. There has
been growing concerns about deploying black-box machine
learning models and FSL is not an exception in this regard.
In this paper, we propose a method for FSL based on a set
of human-interpretable concepts. It constructs a set of metric
spaces associated with the concepts and classifies samples of
novel classes by aggregating concept-specific decisions. The
proposed method does not require concept annotations for
query samples. This interpretable method achieved results
on a par with six previously state-of-the-art black-box FSL
methods on the CUB fine-grained bird classification dataset.

Index Terms— Interpretability, Few-shot, Concept

1. INTRODUCTION

Category recognition is one of the fundamental tasks in com-
puter vision, an area where neural networks have had a great
success. However, they usually require a relatively large
amount of labeled training data for each class. This may limit
their application in scenarios where training data are scarce.
To address this issue, few-shot learning (FSL) has been con-
sidered where the model has to generalize to novel classes
with only a few instances. These classes are disjoint from
the training classes where sufficient data is available for them
during the training stage.

Few-Shot Learning methods usually mimic the few-shot
task by utilizing sampled mini-batches called episodes during
the training stage. In each episode, a set of C classes are ran-
domly selected from training classes. For each of these classes,
K labeled instances are sampled to act as the support set, and a
subset of the remainder serves as the query set [1]. This setting
is referred to as “C-way K-shot”. By using episodic learning,
FSL attempts to improve the model’s generalization ability in
tasks with few instances and transfer the learned knowledge
of the model to few-shot learning problem for novel classes.

Parts of this work was supported by NSERC and ComputeCanada.

This paradigm that is utilized in FSL models is referred to as
meta-learning.

Recent meta-learning models can be roughly grouped into
two categories. The first one, known as Optimization-based
methods [2, 3] aims to fine-tune the learned model on the target
task. The second category focuses on learning a metric space
shared between source tasks [1, 4]. This space will be used to
solve the target task by nearest neighbor search or learning a
simple linear classifier on top of the model [5].

Although FSL models have been able to achieve remark-
able performance in terms of accuracy in recent years, they are
black-box models. There has been a growing concern about
use of black-box models in real-world and FSL is not an ex-
ception. In general, Interpretability maybe be accomplished
by applying post-hoc analysis methods on black-box models
that are already trained, or alternatively we can create models
that are interpretable by design. In the area of FSL, the main
stream approaches have been posthoc [6, 7] and to the best of
our knowledge, research on FSL methods that are inherently
interpretable has rarely been conducted.

Inspired by [4], recently Cao and et. al proposed COMET
[5], a method for FSL along human-interpretable concept di-
mensions. When human tries to learn new bird species, they
are already equipped with some structured, reusable concepts
such as wing, beak, legs and feather that help efficiently adapt
to the new task and also explain their decisions in terms of
such concepts. COMET learns an embedding space for each
concept by masking areas related to that concept. This method
learns one metric space over each concept and the final deci-
sion is based on averaging decisions of different spaces.

Although the aforementioned method is able to provide
interpretable decisions, the concept annotations have to be
given as prior knowledge not only for the instances of base
tasks, but also for the instances of target tasks including the
test samples. However, such concept annotations may not be
readily available at test time. While assuming the availability
of annotations and labels for training samples, including the
few training samples of novel classes is a typical assumption
in supervised learning, we argue that extending such assump-
tion, even partially, to test samples may limit the application
of the resulting model in many real-world scenarios. Besides,
COMET [5] does not properly handle commonalities and dif-
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Fig. 1. Pipeline for performing FSL with InCoPoN.

ferences across concepts. They examined two extreme cases:
training individual networks for concepts, and training a sin-
gle network. However, the former ignore the commonalities
among concepts and the latter ignores the differences between
concepts by forcing the embeddings to be picked from the
same feature map. Another drawback of COMET [5] is that at
the aggregation step, all concepts have equal votes even those
that are weakly present or are completely absent in the input.

In this paper, we present Interpretable Concept-based Pro-
totypical Networks (InCoPoN) to perform FSL based on a
set of human-interpretable concepts. InCoPoN learns a set of
concept-specific metric spaces, and extracts concept-specific
embeddings for query samples and aggregates the resulting
concept-specific decisions to make a final decision. The closest
work to the proposed method is [5] where the three drawbacks
described above are addressed. The contributions of this pa-
per are as follows: 1) We propose an inherently interpretable
method that unlike COMET [5], does not need concept anno-
tations for the test samples. The proposed method learns to
infer them from the test samples. 2) A multi-tasking approach
that includes a shared back-bone network for capturing the
commonalities among concepts followed by individual heads
to capture the differences between concepts. 3) For aggregat-
ing concept ebmeddings, we propose an adaptive approach
where for each sample, it emphasizes more on the concepts
that are present in the sample. Through experiments, we show
that the proposed interpretable method performs on a par with
several previously state-of-the-art black-box FSL methods on
the fine-grained bird classification task using CUB dataset [8]
which is a widely used and yet challenging dataset due to the
presence of highly similar classes. Moreover, through a de-
tailed ablation study we demonstrate the effectiveness of the
second and third contributions over some baseline methods.

2. PROPOSED METHOD

Given a labeled dataset B = {(xi, yi)}Nb

i=1 for base classes Yb,
and a labeled support set S = {(xi, yi)}Ns

i=1 for novel classes
Yn where Yb ∩ Yn = ∅, FSL aims to predict labels of a query

set Q = {(xi, yi)}
Nq

i=1 which also belongs to Yn. Samples
in B, S are annotated for N common high-level concepts
C = {c(k)}Nk=1. Part-based annotations are associated with,
for example, meaningful body parts of birds such as beak, belly
and wings. For each concept, when is present in an image,
only its location would suffice. A bounding box or pixel-based
segmentation is not required.

The proposed method consists of three main components:
1) Concept learners that provide concept-specific feature maps;
2) Concept detectors that predict location of concepts in the
corresponding feature maps. For each concept, the outputs
of this part is a probability score for presence of the concept
along with the corresponding concept embedding vector; 3)
Aggregation module that makes the final decision. These
components will be described in the following.

2.1. Concept learners with shared layers and concept-
specific heads

For each concept c(j), one embedding network f
(j)
θ : X → Ej ,

is learned where X is the image space and Ej is the embedding
space for concept j. Intuitively, each embedding space Ej is
learned to cluster samples around the prototype of their cor-
responding class only based on the concept c(j). This can be
achieved by masking out non-concept regions of the input sam-
ples to ensure the concept learner sees only the concept-related
parts of the input samples during training. Alternatively, the
entire image can be used without masking to get an intermedi-
ate feature map Mh×w×c and from there a feature vector e(j)xi

corresponding to the center location of the concept in the input
image can be picked. h, w and c denotes height, width and
number of channels in the feature map. Note that this can be
done because the locality is preserved when applying filters.
Following [5], we use the second approach. e(j)xi is a vector of
the length c and represents the concept embedding for sample
xi.

In [5], two different designs were considered for concept
learners. The first one learns one totally separate network f (j)

for each concept that results in ignoring commonalities along



different concepts. In the second design, a shared network f
is trained for all concepts, ignoring the differences between
concepts. To consider both commonalities and differences, we
design the concept learners to share weights in early layers
and have their own concept-specific heads. Therefore, the
concept learner f (j) is substituted with g(j) ◦ h where h is the
network with shared parameters and g(j) is the network head
for concept j.

The concept learners are trained on the images of base
classes Yb using episodic learning to mimic the few-shot clas-
sification setting. Using each concept learner j, one concept-
specific prototype P

(j)
y is calculated for class y by averaging

the concept embeddings of support set:

P (j)
y =

1

|Sy|
∑
xi∈Sy

e(j)xi
(1)

where e
(j)
xi is the concept embedding feature vector picked

from g(j) ◦ h(xi) and |Sy| is the number of images in the
support set of class y.

For a query image xq in an arbitrary training episode,
the concept embeddings are extracted using concept learners.
Then by calculating an aggregated distance to concept-specific
prototypes of different classes, the class of xq is determined.
Specifically, to calculate the aggregated distance from the
concept-specific prototypes of class y, the distance of each
concept embedding e

(j)
xq from the concept prototype P jy is cal-

culated. Finally, the distances across all concepts are summed
to calculate the probability of assigning xq to class y as:

p(y|xq) =
exp(−

∑
j∈C d(e

(j)
xq , P

(j)
y ))∑

y′ exp(−
∑
j∈C d(e

(j)
xq , P

(j)
y′ ))

(2)

h and g(j) are trained using the negative log-likelihood L =
− log p(yxq |xq) of true class in an episodic training setting
using the images and concept location of the base classes.

2.2. Predicting concept locations for query samples

Similar to the simulated episodes during training concept learn-
ers, we can perform few-shot classification in target space.
However, since the concept locations are not available for
query images, in the following, we will present an approach to
predict them.

To detect the location of concept feature vector in the last
feature map of concept learner, one binary classifier is trained
on top of each learned concept embedding network using the
concepts of base classes. Specifically, on top of the embedding
network of concept j, a binary classifier c(j) is trained using
binary cross-entropy loss to detect e(j)xi from other feature
vectors in the last feature map of the concept learner. To train
the classifier, the feature vectors corresponding to the center of
the concept in the input images are presented to the classifier
as positive instances. Feature vectors in other spatial locations

of the final feature map are provided to the model as negative
instances.

To detect the feature vector of concept j for an arbitrary
image xa, the image is fed to the network g(j) ◦ h and in the
final feature map M , each feature vector along the channel
dimension is provided to the binary classifier c(j) and the
feature vector with the highest probability is selected as the
class embedding e

(j)
xa .

As the number of negative instances is considerably more
than the positive ones, the classes are weighted in the cross-
entropy loss to alleviate the adverse effect of the imbalance
data.

2.3. Aggregation module

To perform few-shot recognition in target space, concept-
specific prototypes for each class are computed using the
procedure described in Section 2.1 and for each query im-
age xq, the concept embeddings {e(j)xq }j∈C are detected from
the final feature maps of concept learners using the trained
concept-specific classifiers described in the previous subsec-
tion.

Finally, class of the query image xq is determined using
Eq. (3) by measuring the accumulated distance of its concept
embeddings to concept-specific prototypes of each class. This
distance is indicated by Dy(xq) and formulated in Eq. (4).

ŷ = argmax
y∈Yn

exp(−Dy(xq))∑
y′ exp(−Dy′(xq))

(3)

Dy(xq) =

∑
j∈C w

(j)
xq d(e

(j)
xq , P

(j)
y )∑

j∈C w
(j)
xq

(4)

where w
(j)
xq is the inverse of the probability score obtained

from the binary classifier c(j) for the selected feature vector
e
(j)
xq . Therefore, concept embeddings with higher probabilities

will have a higher impact on the final classification decision
and likewise concepts that are not present in the query sample
will have a lower impact.

3. EXPERIMENTS AND EVALUATIONS

3.1. Dataset and experimental settings

We evaluate InCoPoN on Caltech-UCSD Birds-200-2011
(CUB) [8] dataset. This is a fine-grained bird classification
dataset consisting of 11,788 images from 200 different cate-
gories with a total number of 15 parts/concepts locations. We
follow the protocol provided in [9] for splitting the dataset.
The models are evaluated on the widely used 5-way setting.
Specifically, in each episode, 5 classes are sampled randomly
where k samples are provided for each class as support set to
form the k-shot classification task. The query set contains 16
samples from the classes of the support set. The best model is



chosen based on the accuracy on the validation set. For testing,
600 episodes are sampled randomly from novel classes and
the mean accuracy and standard deviation are reported for
these 600 episodes.

The FSL widely used backbone network Conv-4 [10] with
an input size of 84 × 84 is adopted for concept learners. The
first three blocks of this network are shared among different
concept learners and the last block is the head specific to each
concept. Moreover, each concept-specific binary classifier is
a two-layer MLP with 64 neurons in the hidden layer. Fi-
nally, Euclidean distance is employed to measure the distance
between concept embeddings and prototypes. Similar to [5],
standard data augmentation including random crop, rotation,
horizontal flipping and color jittering is performed. Finally,
concept learners are trained using Adam optimizer with a
learning rate of 10−3.

3.2. Performance comparison

We compare InCoPoN with six previously state-of-the-art FSL
methods as shown in Table 1. It can be seen that for both
5-way 5-shot and 5-way 1-shot settings, InCoPoN achieved re-
sults on a par with the black-box FSL models and yet provides
interpretability through learning to learn along human-friendly
concepts. On 5-way 5-shot setting, our method is able to
achieve an average accuracy of 78.6% which outperforms pre-
viously state-of-the-art methods ProtoNet [4], MAML [11],
MatchingNet [12], and is only slightly behind the MetaOptNet
[12] and Baseline++ [9] (1% and 1.6%). On 5-way 1-shot set-
ting, our method records 57.9% in terms of average accuracy.
The top performer is MetaOptNet with an average accuracy of
62.2%. The reason for achieving somewhat less competitive
results on 1-shot setting could be attributed to the fact that not
all concepts are available for each image in CUB dataset, and
it is more likely that a specific concept has no representation
for a class in 1-shot setting since each class is represented with
just one support image. In that case, global average pooling
of the final feature map in the model is used as the features
for that missing concept. COMET [5] achieved 85.3% and
67.9% on 5-shot and 1-shot settings respectively but it should
be noted that because it gains from the additional concept an-
notations for the test samples, a direct comparison may not be
fair.

3.3. Effect of using probability scores as weights

In this section we compare the proposed method with a base-
line model that considers equal weights for all concept embed-
dings. The results are shown in Table 2. It can be seen that
the proposed aggregation module improves the performance
in both 5-way 5-shot and 5-way 1-shot settings.

Table 1. Results of 5-way 5-shot and 5-way 1-shot on CUB
dataset. Average accuracy and standard deviation over 600
randomly sampled episodes are reported.

Method 5-way 5-shot 5-way 1-shot
Baseline++ [9] 80.2 ± 0.6 61.4 ± 1.0
MatchingNet [12] 75.9 ± 0.6 61.0 ± 0.9
MAML [11] 74.4 ± 0.8 52.8 ± 1.0
RelationNet [1] 78.6 ± 0.7 62.1 ± 1.0
MetaOptNet [13] 79.6 ± 0.6 62.2 ± 1.0
ProtoNet [4] 76.1 ± 0.7 57.1 ± 1.0
InCoPoN 78.6 ± 0.7 57.9 ± 0.9

Table 2. Comparison between the proposed method and the
baseline model with equal weights for all concepts.

Method 5-way 5-shot 5-way 1-shot
InCoPoN with equal weights 77.2 ± 0.7 57.6 ± 0.9
InCoPoN with probability scores as weights 78.6 ± 0.7 57.9 ± 0.9

3.4. The impact of backbone network design

To evaluate our new design for the backbone network, a com-
parison is performed between COMET with its original de-
signs and our new design as shown in Table 3 While COMET
with original designs achieved the same performance of 85.3%
in terms of average accuracy in 5-way 5-shot setting, the new
design improved the performance by approximately 2%. This
improvement is even higher in 5-way 1-shot setting achieving
3.97% higher average accuracy.

Table 3. Comparison between COMET with our design and
the original designs of backbone network.

Method 5-way 5-shot 5-way 1-shot
COMET shared w 85.3 ± 0.5 67.9 ± 0.9
COMET with distinct networks 85.3 ± 0.5 67.9 ± 0.9
COMET ours 87.25 ± 0.46 71.87 ± 0.92

4. CONCLUSION

In this paper, an interpretable few-shot learning model was
proposed. Although it decomposes the decision space into mul-
tiple metric spaces associated with human-interpretable con-
cepts, it does not require concept annotations for test samples.
The process of learning multiple metric spaces is efficiently
modeled as a multi-tasking problem. The results are aggre-
gated by considering the degree that each concept is present in
the input. Finally, The proposed interpretable method achieved
competitive average accuracy in the range of six previously
state-of-the-art black-box FSL methods.
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