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ABSTRACT

Predicting the quality of multimedia content is often
needed in different fields. In some applications, quality met-
rics are crucial with a high impact, and can affect decision
making such as diagnosis from medical multimedia. In this
paper, we focus on such applications by proposing an effi-
cient and shallow model for predicting the quality of medical
images without reference from a small amount of annotated
data. Our model is based on convolution self-attention that
aims to model complex representation from relevant local
characteristics of images, which itself slide over the image to
interpolate the global quality score. We also apply domain
adaptation learning in unsupervised and semi-supervised
manner. The proposed model is evaluated through a dataset
composed of several images and their corresponding subjec-
tive scores. The obtained results showed the efficiency of
the proposed method, but also, the relevance of the applying
domain adaptation to generalize over different multimedia
domains regarding the downstream task of perceptual quality
prediction. 1

Index Terms— Medical images, deep learning, domain
adaptation, self-attention

1. INTRODUCTION
Predicting the quality of multimedia content is often needed
in several fields [1, 2]. It allows to quantify how much the in-
troduced distortions on a given multimedia may damage the
visual perceived quality. It is used to enhance the quality of
experience [3], optimize compression schemes [4] or employ
as pre-treatment for some computer vision applications [5]
such as biometrics [6], Face recognition [7] and so forth. For
some specific applications, quality metrics are crucial with
a high impact. Medical images are among the more sensitive
data since their quality may lead to wrong diagnosis and prog-
nosis [8]. It is therefore important to develop effective metrics
dedicated to the data domain of these particular images.

Depending on the availability of the pristine image, ex-
isting metrics can be divided into three main categories: Full
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Reference metrics where the pristine image is supposed ac-
cessible, Reduced Reference metrics where only some fea-
tures of the pristine image is given and No Reference or blind
metrics where only the distorted image is available. Here, we
focus on blind approach since its corresponds more to the real
case. Interesting metrics were already proposed in the liter-
ature. In [9], the authors proposed to extend the well-known
NIQE method [10] for medical images. The metric, called
NIQE-k, is based on a signal analysis in frequency domain.
In [11], the authors developed a metrics based on a gradient
analysis, while texture features were used in [12].

In this paper, we propose an efficient and shallow model
for predicting the quality of medical images without reference
from small amount of annotated data. Well-known deep con-
volutional neural network (CNN) architectures such as VGG
[13] or ResNet [14] are designed to work well on hierarchi-
cal representation learning. Their initial layers detect simple
patterns like edges and gradients, while higher layers detect
more abstract features related the global structure [15]. The
robustness of these models may lead to ignore the introduced
perceptual effects. To address this issue in our context, we
employ shallow CNN models that incorporate a self-attention
module, but also which itself slide over the image in order
to model complex local features related to quality prediction
downstream task. Nonetheless, lake and shortness of exist-
ing medical imaging quality dataset inhibit the development
of personalized deep quality metrics. As a solution, we ap-
ply domain adaptation learning in unsupervised and semi-
supervised manner in order to create a link between the data
domains. The proposed model is evaluated through a dataset
composed of several images and their corresponding subjec-
tive scores. The results obtained showed its efficiency and the
relevance of applying domain adaptation to reduce the shift
between data domains distribution.

The main contributions of our paper are summarized be-
low:

• We propose a novel shallow and efficient CNN model
for predicting perceptual quality, relying on extracting
useful information from distorted local features.

• We incorporate self-attention module in order to focus
on the main intrinsic characteristics of the considered
images, and model efficient representation from long
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Fig. 1. Model Architecture : Self Attention Quality Metric (SAQM)

range of distant low level features.
• We conduct extensive experiments to demonstrate the

effectiveness of our approach, and analyse the impact
of unsupervised and semi-supervised domain adapta-
tion in reducing the shift in extracting relevant features
distribution between medical and natural scene images.

2. PROPOSED METHOD
The overall architecture of our method is illustrated in Fig-
ure 1. The main contribution of our approach is to use a
shallow convolution based self-attention module, which itself
slide over the image for extraction informative local features,
and model the global quality score (see Fig. 2). Main compo-
nents of our model are described in details below.

Fig. 2. Sliding Window Self-Attention Quality Metric

2.1. Deep Quality Self-attention Kernel

The integration of attention mechanism has recently shown
important leap in the performance of various downstream
computer vision tasks [16] [17]. Unlike the absolute atten-
tion mechanisms, the one mentioned above learns in a fully
adaptive, joint, and task-oriented manner, which allows the
network to prioritise and associate weights to feature vectors
[18]. The self-attention computes the response at a position
in a vector or sequence by attending all positions within the
same sequence. In greater detail, it draws the relationship

between distant features, incorporating self-attention prompts
to our shallow network in order to capture complex features
related to our downstream task (i.e. quality assessment), thus
boosting the representation capability of the full network.

For a given vector, we need to extract Query, Key and
Value vectors from it using the shallow CNNs architecture in
Table 1. The latter measures attention by calculating a simi-
larity between the Query and best related Key features using
a score function; The output scores go through the normalisa-
tion step to have the sum of probability values equal to one.
The final adjusted Value vector is a weighted combination of
the previous Value vectors based on the normalised score re-
sult [18].

Each patch is transformed into three variables, The re-
sulted couple (Query,Key) ∈ RC/8×N from Q(Xi) and
K(Xi), respectively, simplifying the dimension of Xi ∈
RC×N , where N =(h = 8, w = 8) representing the number
of feature locations, and C the number of output channels
from V (.) module. The attention map resulted after normal-
izing the output of dot product between the Query and key
vectors using a Softmax function, where S represents the
similarity between the Query and Key feature spaces :

Slj = Query[l]T .Key[j] (1)

Aj,l =
exp(Slj)∑N
j=1 exp(Slj)

, (2)

The attention map A∈ RN×N represents the likelihood
that a particular positional feature in lth location appears in
the jth location inN feature locations, (j,l)∈ RN . The V alue
feature space is further enhanced by multiplying it to the at-
tention map. A learnable parameter γ is also used in order to
learn how much the overall patch prediction should relay on
the context composed from local features.

Output = γ × V alue.A+ V alue (3)

Finally, a Global Max-pooling is applied to the Output in
order to have one dimensional vector, which is later passed



through a shallow multi-layer perceptron (MLP) regressor to
interpolate the patch quality score, the global quality score is
obtained by averaging all patches’ quality.

Layer Output Shape Param #
Conv2d-1 [-1, 128, 32, 32] 3,584
ReLU-2 [-1, 128, 32, 32] 0
Conv2d-3 [-1, 256, 32, 32] 295,168
ReLU-4 [-1, 256, 32, 32] 0
Conv2d-5 [-1, 256, 32, 32] 590,080
ReLU-6 [-1, 256, 32, 32] 0
Conv2d-7 [-1, 256, 32, 32] 590,080
ReLU-8 [-1, 256, 32, 32] 0
MaxPool2d-9 [-1, 256, 16, 16] 0
Conv2d-10 [-1, 512, 16, 16] 1,180,160
ReLU-11 [-1, 512, 16, 16] 0
Conv2d-12 [-1, 512, 16, 16] 2,359,808
ReLU-13 [-1, 512, 16, 16] 0
Conv2d-14 [-1, 512, 16, 16] 2,359,808
ReLU-15 [-1, 512, 16, 16] 0
MaxPool2d-16 [-1, 512, 8, 8] 0
Conv2d-17 [-1, C, 8, 8] 262,656
ReLU-18 [-1, C, 8, 8] 0

Q(x), K(x), and V(x) have similar architecture. For Q(x), K(x)
the number of channels (C = 512) is divided by 8, to reduce the
dimension during measuring the similarity between the Key and
Query vectors.

Table 1. Architecture of our models.

2.2. Domain adaptation

To fully utilise the power of our models, we need to adapt
them to a new source domain. In the first place, the models
need to be able to perceive the two domains (i.e. the orig-
inal natural scene and the medical images) as being part of
the same data distribution D [19]. That is achieved by min-
imising the perceived distance between the two distributions
of images Dn Dp.

As we train our models on images from both distributions,
we add a small branch to the networks which classifies the im-
ages as being fromDn orDp. Furthermore, we add a Gradient
Reversal Layer (GRL) on top of this branch, which reverses
the sign of the gradient flow during back-propagation. Eq.
4 defines forward propagation, while Eq. 5 concerns back-
propagation.

GRL(x) = x (4)

GRL(
∂Ld

∂x
) = −∂Ld

∂x
(5)

where x is the input of the layer, and ∂Ld

∂x represents the gra-
dient of the domain loss Ld when back-propagating through
the network.

The reversal of the gradient helps the feature extractor of
the network to minimise the distance between domain dis-
tributions, thus forcing the feature extractor to disregard the

domain-specific features and noises, and emphasise the mu-
tual characteristics of the two domains.

This can be also modeled as the union of the 2 consid-
ered distributions minus the noise distribution of each of the
domains:

D = Dp +Dn − (Np +Nn) (6)
where Dn,Dp and D are defined as before, and Np and Nn

are the specific noise distributions of the source domain.

2.3. Technical Details

We implemented our models in PyTorch and trained them on
both data domains with and without domain adaptation each
time for 100 epochs. The K(.), Q(.) and V (.) modules were
randomly initialized, as well as the regressor and the domain
classifier. We normalize the ground truth quality scores (i.e.
MOS: Mean Opinion Score) from both data domains to have
probability distributions. We employed Binary Cross Entropy
(i.e. BCE) in order to minimize the global risk, and the Adam
optimiser to train the model. We set the learning rate to 5 ∗
10−4, and the γ parameter was initialized to zero in order to
focus on learning the main task.

3. EXPERIMENTAL RESULTS

3.1. Datasets

As mentioned above, domain adaptation has been applied in
this study in order to fully optimize the use of our models. To
this end, 2 datasets has been used: One composed of natural
images considered here as the source data and the second one
composed of medical images considered as the target data.
Both datasets are briefly described below:

• A subset of TID13 dataset: Images from TID13
dataset [20] has been used in this study. More pre-
cisely, we considered only the 125 denoised images
(i.e. distortions number 9 of the dataset) derived from
25 reference images. For each image, the correspond-
ing MOS value is given.

• MD72 dataset: The medical dataset proposed in [9]
has been here used. The latter, denoted here as MD72,
is composed of 72 liver Ultrasound images with the cor-
responding MOS. More precisely, 60 denoised images
were derived from 12 pristine images through 5 denois-
ing algorithms. A sample of images is shown in Fig 3.

It is worth noting that only a specific subset of TID13
dataset has been used as source data for domain adaptation
learning. This choice was motivated by the fact that the con-
sidered medical image dataset is composed only of denoised
images and thus this subset is most related to our downstream
task.

In this section, we further analyse the impact of the pro-
posed Domain Adaptation (DA) schemes on the performance.
The goal is to show the relevance of using DA in such context.



Fig. 3. Sample of images of the considered dataset.

To this end, we computed the correlations for three configu-
rations:

1. Fully supervised approach without DA by training the
model on MD72 and testing it on both datasets.

2. Fully supervised approach without DA by training the
model on TID13 and testing it on both datasets.

3. Unsupervised DA by using TID13 as source data and
MD72 as target data.

4. Semi-supervised DA by using TID13 as source data
and MD72 as target data.

Config. MD72 TID13
PLCC ↑ SROCC ↑ PLCC ↑ SROCC ↑

1 0.557 0.670 0.324 0.414
2 0.685 0.560 0.906 0.794
3 0.756 0.769 0.683 0.685
4 0.810 0.812 0.907 0.784

Table 2. Impact of the DA on the performance.

From the results shown in Table 2, several observations
can be made. According to the results obtained for configu-
ration 1, we can see that training our model directly on the
medical dataset was not enough to predict the quality well,
even with a shallow model. The correlations obtained were
thus very low for both datasets. The results of configuration
2 show that it seems easier to reach suitable performance for
task related to natural images (i.e. subset of TID13 dataset)
than medical images. Through the results of configurations 3
and 4, we can clearly see the impact of DA on performance.
Indeed, the performance achieved on the target dataset (i.e.
MD72) grown significantly. However, we also noticed that
the correlations drop on the source data (i.e. the subset of
TID13) when the unsupervised learning of DA was applied.
The best overall correlations were obtained through semi-
supervised DA learning for both datasets with considerable
improvements.

3.2. Comparison with state-of-the-art methods

Our method is evaluated in terms of correlations with the sub-
jective scores only on the target data (i.e. medical images). To
this end, we computed the Pearson and Spearman correlations
between the predicted scores and subjective ones. We com-
pared the performance of our model to some blind state-of-
the-art metrics: BRISQUE [21], NIQE [10], bliinds [22] and

BIQAA [23]. We also considered a metric, so-called NIQEK
[9], that was developed specifically for such kind of medical
images. In addition to those methods, we finally considered
2 metrics dedicated to the blur (i.e. MARZILIANO [24] and
RadialIndexD [25]) and 1 other for estimating the noise (i.e.
[26]).

The table 3 shows the performances obtained for each of
the compared methods. The 2 best results are highlighted
in bold. As can be seen, all the compared metrics obtained
correlations lower than 0.7, except our method which outper-
formed them by reaching correlations higher than 0.8. The
second best PLCC and SROCC were obtained respectively
by BIQAA and RadialIndexD, far from the results obtained
by our method.

Metric PLCC ↑ SROCC ↑
BRISQUE 0.6551 0.3829
NIQE 0.4972 0.2768
NIQEK 0.5682 0.4429
bliinds 0.4373 0.4131
BIQAA 0.6643 0.5297
Noise 0.5978 0.5286
MARZILIANOmetricD 0.5303 0.3028
RadialIndexD 0.5905 0.5338
Our 0.810 0.812

Table 3. Results obtained on MD72 dataset

4. CONCLUSION
In this paper, we proposed a novel method for quality assess-
ment of medical images. In particular, we looked to address
the task of predicting the satisfied ultrasound image quality
for applying an accurate diagnosis from small amount of an-
notated data. To this end, we employed a shallow CNNs as
a self attention modules in order to model efficiently com-
plex representation from local features that affect the visual
perception. We also used unsupervised and semi-supervised
domain adaptation learning to reduce the shift between data
domain distributions, and generalize well over small medi-
cal annotated datasets. The obtained results shows the effec-
tiveness and the efficiency of our method. We look forward
to create a stronger link between data domains, thought urg-
ing our shallow model to learn first the quality relevant com-
mon structures of different domains from images only in self-
supervised way.

5. REFERENCES

[1] Aladine Chetouani, “A blind image quality metric using
a selection of relevant patches based on convolutional
neural network,” in EUSIPCO, 2018, pp. 1452–1456.

[2] Aladine Chetouani, “Convolutional neural network and
saliency selection for blind image quality assessment,”
in IEEE ICIP, 2018, pp. 2835–2839.



[3] Kjell Brunnström et al., “Qualinet White Paper on Defi-
nitions of Quality of Experience,” 2013, Qualinet White
Paper on Definitions of Quality of Experience Output
from the fifth Qualinet meeting.

[4] Suiyi Ling et, al., “Towards perceptually-optimized
compression of user generated content (ugc): Prediction
of ugc rate-distortion category,” 07 2020, pp. 1–6.

[5] Aladine Chetouani and Mohammed El Hassouni, “How
to Optimize the Utilization of Image Quality Metrics in
Computer Vision?,” in MedPRAI, 2018.

[6] Emna fourati, Wael Elloumi, and Aladine Chetouani,
“Anti-spoofing in face recognition-based biometric au-
thentication using Image Quality Assessment,” Multi-
media Tools and Applications, 2019.

[7] Ali Khodabakhsh, Marius Pedersen, and Christoph
Busch, “Subjective versus objective face image qual-
ity evaluation for face recognition,” in International
Conference on Biometric Engineering and Applications,
2019, p. 36–42.
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