
GAUSSIAN KERNEL-BASED CROSS MODAL NETWORK FOR
SPATIO-TEMPORAL VIDEO GROUNDING

Zeyu Xiong1 Daizong Liu2 Pan Zhou1∗

1 The Hubei Engineering Research Center on Big Data Security,
School of Cyber Science and Engineering, Huazhong University of Science and Technology

2 Wangxuan Institute of Computer Technology, Peking University
zeyuxiong@hust.edu.cn, dzliu@stu.pku.edu.cn, panzhou@hust.edu.cn

ABSTRACT

Spatial-Temporal Video Grounding (STVG) is a challenging
task which aims to localize the spatio-temporal tube of the in-
terested object semantically according to a natural language
query. Most previous works not only severely rely on the an-
chor boxes extracted by Faster R-CNN, but also simply regard
the video as a series of individual frames, thus lacking their
temporal modeling. Instead, in this paper, we are the first to
propose an anchor-free framework for STVG, called Gaussian
Kernel-based Cross Modal Network (GKCMN). Specifically,
we utilize the learned Gaussian Kernel-based heatmaps of
each video frame to locate the query-related object. A mixed
serial and parallel connection network is further developed
to leverage both spatial and temporal relations among frames
for better grounding. Experimental results on VidSTG dataset
demonstrate the effectiveness of our proposed GKCMN.

Index Terms— anchor-free, Gaussian kernel, spatial-
temporal video grounding

1. INTRODUCTION

Video grounding with natural language is a fundamental but
challenging problem due to its vast potential applications in
visual-language understanding. Generally, it could be catego-
rized into three different classes: spatial grounding [1, 2, 3, 4],
temporal grounding [5, 6, 7, 8] and spatio-temporal ground-
ing [9]. Among them, Spatial-Temporal Video Grounding
(STVG) is substantially more challenging as it needs to not
only model the complicated multi-modal interactions for se-
mantics alignment, but also retrieve both spatial location and
temporal duration of the target activity. As shown in Fig. 1,
STVG aims to localize the spatio-temporal tube of the queried
object according to the given textual description.

Most previous spatial or temporal video grounding tech-
nologies [10, 11, 12] are designed to tackle the grounding
problems by directly detecting the foreground objects of each
video frame for objects correlation learning [11, 12], or by
regressing the temporal segment boundary in the video [10].
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Sentence Query: A child is taking a bath with a pair of dark glasses.

  Ground Truth          6.23s  |                                                                                                  | 30.69s

Fig. 1. An example of spatio-temporal video grounding task.

One most recent work for STVG task [9] tackles the ground-
ing problem in a more general way, which is able to ground
the spatio-temporal tubes of the queried object in untrimmed
videos. However, all these grounding methods suffer the fol-
lowing drawbacks: (1) They severely rely on the detection
quality of the detection model. Besides, they generally pre-
generate the proposal regions with the detected anchor boxes,
leading to the time-consuming computation. (2) They typi-
cally treat the video frames individually without considering
the temporal correlation between the consecutive frames.

To alleviate the above issues, in this paper, we introduce
the first anchor-free framework for STVG task, called Gaus-
sian Kernel-based Cross Modal Network (GKCMN). Specifi-
cally, for video clip encoding, we extract their spatio-temporal
feature maps from the last convolutional layer of I3D [13].
For sentence query encoding, we first extract the word-level
features individually by the Glove [14] and then embed their
sequential information via a BiGRU. Both visual and sentence
semantics are subsequently aligned by using a Cross-model
Interaction module. After that, a Mixed Serial and Parallel
Connection Network is further deployed to learn both spatial
non-local information and temporal modeling of the multi-
modal representation. As for spatial locating, we learn Gaus-
sian heatmaps for indicating the object position in each frame
by utilizing a Gaussian kernel to mark the position of multi-
modal semantics and deeming every pixel in annotation boxes
as a boundary regression sample during the training process.
At last, to accurately localize the start and end timestamps of
the queried objects, we calculate the confidence score of the
potential temporal candidates and develop a Boundary Re-
gression Head to rectify the offsets of the highest score tem-
poral tube.

Our main contributions are summarized as: (1) We pro-
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Fig. 2. The overall architecture of our proposed GKCMN.

pose the first anchor-free model GKCMN for spatio-temporal
video grounding, which utilizes Gaussian kernels to high-
light the foremost region of target semantics; (2) We design
a mixed convolutional network to capture both temporal and
spatial information; (3) We demonstrate the effectiveness of
the GKCMN model by evaluating on the VidSTG dataset.

2. METHOD

Given an untrimmed video V and a sentence S, the STVG
task aims to retrieve a spatio-temporal tube U in video V ,
which corresponds to the semantic of sentence S. The frame-
work of our proposed GKCMN is illustrated in Fig. 2.

2.1. Encoder
Video Encoder. To encode the video frames, we utilize a pre-
trained I3D network [13] to extract its last convolutional layer
features as V = {vt}T−1t=0 , where T denotes the frame num-

ber, vt ∈ Rd×
H
rh
× W

rw represents the t-th frame 2D feature,
d is visual feature dimension, H and W are the height and
width of input frames, and rh, rw are scaling factors.
Sentence Encoder. For sentence encoding, we first ex-
tract word-level features via the Glove [14] embedding, and
then employ a self-attention module [15] to capture the self-
dependencies among words. We further utilize a Bi-GRU [16]
to learn their sequential features and denote the final sentence
feature as S = {sn}N−1n=0 , where sn ∈ RD represents the n-th
word feature, and D is word feature dimension.
Cross-model Interaction. We first repeat the textual tensor
Sr = repeat(S) to the same shape with visual tensor, and
obtain the multi-modal matrix by fusing V with Sr. Next, the
cross-modal interacted feature Ff2 is obtained by:

Ff1 = g(VWv1) · g(SrWs1),

Ff2 = concat(g(Ff1Wf2), g(VWv2)),
(1)

where g(·) is the non-linear activation function, Wv1, Ws1,
Wf2 andWv2 are learnable parameters. In following process,

we utilize Ff2 ∈ RD
′×T× H

rh
× W

rw as the input fusion feature
to extract spatio-temporal relationships.

2.2. The Mixed Convolutional Network
We construct spatio-temporal relationships in terms of depth
and width by the serial connection network and the parallel
connection network, respectively.
Serial Connection Network. For any 3D signal Ff2, we re-
shape it into the 2D batches and learn the spatial character-
istics of each frame by 2D convolutional blocks. Next, we
use 3D convolution to learn the timing sequential relationship
between each activity. Therefore, the output of the serial con-
nection networkMser can be formulated as:

Mser = K3 ⊗ reshape′(K2 ⊗ reshape(Ff2)), (2)

where ⊗ represents the convolution operation, Ki means the
i-dimension kernel.
Parallel Connection Network. Similarly, we utilize parallel
structures to learn and fuse stationary and temporal informa-
tion via 2D and 3D CNN blocks.

Mpar = K3 ⊗ Ff2 + reshape′(K2 ⊗ reshape(Ff2)). (3)

Mixed Convolutional Network. Our Mixed Convolutional
Network combines series and parallel connections with a
residual structure. As shown in Fig. 2, we fuse the original
feature maps Ff2, serial featuresMser and temporal residual
featuresM3 via a triple-parallel structure. Then we have:

Mmix = K3 ⊗ Ff2 +Mser + Ff2. (4)

2.3. Spatial Location Head
We construct a Gaussian kernel-based spatial location head
to predict bounding boxes of queried object. Firstly, we up-
sampleMmix to obtainMup ∈ RD′×T×L×L for spatial lo-
calization scaling, where L is the feature map size.
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Fig. 3. Illustration of Gaussian kernel-based grounding.

Gaussian Kernels. We deem the video frames as a series
of heatmaps with the queried object as the center of the heat
source, and utilize Gaussian kernels to describe the probabil-
ity distribution of the object’s position as shown in Fig. 3.

Given annotated boxes {bt}T−1t=0 , firstly we linearly map
it to the feature map scale L. For each re-scaled box b′t, we
find the center coordinates (xt, yt). Then, the heatmap ht ∈
[0, 1]L×L using Gaussian kernel is given by:

ht(x, y) = exp

(
− (x− xt)2 + (y − yt)2

2σ2

)
, (5)

where σ determines the size of kernels.
Point Localization. In this step, our aim is to learn the pre-
dicted heatmaps {ĥt}T−1t=0 supervised by the Gaussian kernel-
based one. The peak of the Gaussian distribution of key points
is regarded as the positive sample while other pixels are re-
garded as the negative sample. We modify focal loss [17] as:

Lsloc =
−1
Mfoc

∑
txy

{
(1− ĥtxy)α log(ĥtxy), if htxy > γ

(1− htxy)βĥαtxy log(1− ĥtxy), else
(6)

where Mfoc stands for the number of annotated boxes, α
and β are hyper-parameters of the focal loss, γ is our mod-
ified hyper-parameter which determines the number of posi-
tive samples.
Size Regression. Then, a size regression head is employed
to define the object size. Each pixel in the annotation box is
treated as a regression sample. Given the predicted distances
{ŝt}T−1t=0 ∈ RT×4×L×L and ground truth {st} , we decode
the predicted boxes {b̂t} and corresponding annotated boxes
{bt}. Then, GIoU is used as loss for bounding box regression:

Lsreg =
1

Miou

∑
(t,x,y)∈at

GIoU(b̂txy, bt), (7)

whereMiou represents the number of regression samples, i.e.,
the number of the pixel (t, x, y) in annotation area at.

2.4. Temporal Location Head
Taking the multi-modal featuresMmix as input, we put it to
a temporal location head to attain the temporal boundaries as
is shown in Fig. 4.
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Fig. 4. Illustration of temporal location head.

Embedding Layer. First, three different kinds of 3D convo-
lution layers are deployed with the kernel size 1, 3 and 5 re-
spectively to learn differentiated time-length features. Then a
3D convolution layer and an average pooling layer are placed
after the above layers. Next, we use a self-attention module
to enhance the inner relation in terms of time sequence.
Score Confidence Head. This head is implemented as a Bi-
GRU and a 1D convolution layer. We estimate the IoU i ∈
[0, 1] between the generated temporal tubes and the corre-
sponding ground truth, and confidence scores are the value
of the IoUs. Then a threshold c is defined to set the score of
the tubes to zero where i < c. We utilize a smooth l1 loss for
confidence evaluation, given by:

Ltcon =
1

Nc

Nc∑
n=1

L1(in, în), (8)

where L1 is the smooth l1 loss, Nc and în stand for the num-
ber of tubes and the n-th predicted IoU score.
Boundary Regression Head. Similarly, we use a Bi-GRU
and a 1D convolution layer to implement the boundary re-
gression head. Every tube that has the potential to be selected
own an offset δk = (δs, δe). With the ground truth (ts, te)
and the predicted tube (t̂s, t̂e), we know that δs = ts− t̂s and
δe = te − t̂e. Then we compute the smooth l1 distance by:

Ltreg =
1

Nc

Nc∑
k=1

L1(δk.δ̂k). (9)

Therefore, the total loss is a multiple loss combing the
above four loss functions as:

L = α1Lsloc + α2Lsreg + α3Ltcon + α4Ltreg, (10)

where α1, α2, α3, α4 are balanced parameters for loss.

3. EXPERIMENTS

Dataset. We evaluate our method on a large-scale spatio-
temporal video grounding dataset VidSTG [9], which con-
tains 5,563, 618 and 743 untrimmed videos in the training,
validation and testing sets respectively.



Anchor-based m t m v v@0.3 v@0.5
G [18] + T [5]

34.63
9.78 11.04 4.09

S [12] + T [5] 10.40 12.38 4.27
W [19] + T [5] 11.36 14.63 5.91
G [18] + L [20]

40.86
11.89 15.32 5.45

S [12] + L [20] 12.93 16.27 5.68
W [19] + L [20] 14.45 18.00 7.89

STGRN [9] 48.47 19.75 25.77 14.60
Anchor-free

BM 32.62 7.21 9.03 3.87
GKCMN 55.01 19.26 23.53 15.41

Table 1. Performance compared with previous methods on
the VidSTG dataset. The letter G, S, W, T, L represents the
method of GroundR, STPR, WSSTG, TALL, L-Net respec-
tively

Evaluation Metric. Following previous work [9], we adopt
m tIoU (m t) to evaluate the temporal grounding performance
and apply m vIoU (m v) and vIoU@R (v@R) as the evalua-
tion criteria of spatio-temporal accuracy.
Implementation Details. For video preprocessing, we first
resize the input video to 224 × 224 pixels for each frame,
and put every 8 frames to a pre-trained I3D model with stride
4, obtaining the feature of the last convolutional layer with
size 7 × 7. The feature dimension d is 32. We set the length
of video feature sequences to 200. For language encoding,
we set the maximum length of words to 20, and apply Glove
embedding to embed each word to a 300 dimension feature
matrix. As for the model setting, we set the number of atten-
tion layers to 2, confidence threshold c is set to 0.3, γ is set
to 0.8, δ is set to 0.9, and we set feature maps scale L to 16.
The balanced parameters α1, α2, α3, α4 are 1.0, 2.0, 0.2, 0.1,
respectively. We use an Adam optimizer with a learning rate
of 0.003.
Experiments Results. We remove our mixed convolu-
tional network and location heads to train the model as our
anchor-free baseline method (BM). Besides, we compare
our GKCMN with the state-of-the-art anchor-based method
STGRN [9]. Other anchor-based methods like GroundeR
(G) [18], STPR (S) [12], WSSTG (W) [19] need a tempo-
ral localizer, such as TALL (T) [5] and L-Net (L) [20], to
ground spatio-temporal tube in untrimmed videos. Thus, we
combined them into six additional methods for comparison.

Table 1 shows the overall results of experiments and we
find: for temporal grounding, our GKCMN outperforms the
anchor-based methods STGRN, TALL and L-Net on met-
ric m tIoU, which demonstrates the mixed spaio-temporal
modeling is of vital importance to capture the temporal
characteristics. For spatio-temporal grounding, our model
has shown comparable performance with the state-of-the-art
anchor-based method, even surpassing STGRN with respect
to v@0.5. In the aspect of anchor-free methods, our GKCMN
shows a significant improvement over the anchor-free BM.

Method m v v@0.3 v@0.5
GroundeR [18] 28.80 43.20 22.74

STPR [12] 29.72 44.78 23.83
WSSTG [19] 33.32 50.01 29.98
STGRN [9] 38.04 54.47 34.80

BM 22.37 34.92 16.33
GKCMN 37.25 52.67 34.51

Table 2. Evaluation results with the temporal ground truth.

Module m t m v v@0.3 v@0.5
w/o SC 54.16 18.76 22.35 13.86
w/o PC 54.22 18.62 22.17 13.28
w/o MN 53.27 17.28 21.59 12.86
w/o TA 53.13 18.88 22.81 14.73
w/o SK 54.95 18.29 22.68 14.27

full 55.01 19.26 23.53 15.41

Table 3. Ablation study on the VidSTG dataset.

In order to eliminate the influence of temporal ground-
ing on the overall spatio-temporal grounding, we conducted
a separate experiment by giving the temporal ground truth as
shows in Table 2. Here, we can clearly observe that the pro-
posed GKCMN outperforms the other anchor-based methods
and achieves a comparable result with STGRN. It is worth
noting that our Gaussian kernel design has greatly improved
the accuracy of spatial localization compared with BM.
Ablation Study. For ablation study, we verify the contribu-
tion of each part of our proposed GKCMN with the center-
based scheme. More specifically, we modify our complete
model to five settings: w/o SC, w/o PC, w/o MN, w/o TA,
w/o SK, which represents the removal of the serial connec-
tion, the parallel connection, the complete mixed convolu-
tional network, the self-attention module, and the replacement
Gaussian kernel with single point localization, respectively.

The ablation results are shown in Table 3. We can find
that every ablation model has precision reduction compared
with the full model, which manifests each above component
provides a positive contribution.

4. CONCLUSION

In this paper, we propose a novel anchor-free cross-modal net-
work GKCMN for STVG task. The main contributions of our
work are: 1) we propose a Gaussian kernel-based anchor-free
architecture for STVG task, 2) we develop a mixed convolu-
tional network to capture cross-modal features in both tem-
poral and spatial aspects, 3) experimental results on VidSTG
dataset show the superiority of our method.
Acknowledgments. This work was supported by National
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