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ABSTRACT

Large and performant neural networks are often overparam-

eterized and can be drastically reduced in size and complex-

ity thanks to pruning. Pruning is a group of methods, which

seeks to remove redundant or unnecessary weights or groups

of weights in a network. These techniques allow the creation

of lightweight networks, which are particularly critical in em-

bedded or mobile applications.

In this paper, we devise an alternative pruning method that

allows extracting effective subnetworks from larger untrained

ones. Our method is stochastic and extracts subnetworks by

exploring different topologies which are sampled using Gum-

bel Softmax. The latter is also used to train probability distri-

butions which measure the relevance of weights in the sam-

pled topologies. The resulting subnetworks are further en-

hanced using a highly efficient rescaling mechanism that re-

duces training time and improves performance. Extensive ex-

periments conducted on CIFAR show the outperformance of

our subnetwork extraction method against the related work.

Index Terms— Lightweight networks, pruning, efficient

computation, topology selection

1. INTRODUCTION

Deep neural networks are nowadays becoming mainstream

in solving many image processing tasks including visual cat-

egory recognition. The success of these models has been

reached at the expense of an increase in their inference time,

memory consumption and energy footprint. With the era of

intelligent embedded systems (provided with limited energy

and computational resources), a current trend is to make these

models lightweight and frugal while maintaining their high

accuracy. Existing solutions in lightweight network design

are targeted toward creating small and efficient architec-

tures from scratch [1, 2, 3, 4] while others derive highly

compact yet effective neural networks from larger ones.

These methods predominantly include knowledge distilla-

tion [5, 6, 7, 8, 9, 10] and pruning [11, 12, 13].

Pruning methods, either structured or unstructured, are

particularly successful, and seek to remove connections with

the least perceptible impact on classification accuracy. Struc-

tured pruning consists in jointly removing groups of weights,

entire channels or subnetworks [14, 15], whereas unstruc-

tured pruning aims at removing weights individually [13, 16].

Unstructured pruning has witnessed a recent surge in inter-

est in the wake of the Lottery Ticket Hypothesis [17]; an

empirical study in [17] shows that large pretrained networks

encompass subnetworks, called Lottery Tickets, whose train-

ing with initial weights taken from the large networks yields

comparably accurate classifiers. Another study [18] pushes

that finding further and concludes that only the topology of

these subnetworks is actually important in order to reach

comparable performances. In general, extracting an efficient

subnetwork is still an open problem and is computationally

demanding as this amounts to full training of large networks

(till convergence) prior to their pruning. Existing alternatives

approach this problem using early pruning [19, 20, 21], but

still require to train the weights. In contrast to these works,

our proposed solution in this paper identifies effective sub-

networks by training only their topology and without any

weights tuning.

A theoretical analysis in [22, 23, 24] has established the

sufficient conditions about the existence of efficient and ef-

fective subnetworks in over-parameterized large networks,

nonetheless, no constructive proof has been provided in or-

der to identify these subnetworks. In this context, Zhou et

al. [25] proposed the first attempt to extract efficient sub-

networks using stochastic mask training. A probability of

selecting each weight is defined (as the sigmoid of a mask)

and trained using the Straight Through Estimator (STE) [26].

During training, weights are frozen and only the masks are

allowed to vary. However, the major drawback of this method

resides in the vanishing gradient of the sigmoid which makes

mask training numerically challenging. Ramanujan et al. [27]

proposed another alternative, based on binarized saliency in-

dicators learned with STE, which selects the most prominent

weights in the resulting subnetworks. Nevertheless, since this

method enfore the pruning rate a priori, finding the pruning

rate giving the higest performances has to be made through

a cumbersome and time-consuming binary search or grid-

search.

Considering the limitation of the aforementioned related

work, we introduce in this paper a new stochastic subnet-

work selection method based on Gumbel Softmax. The latter

allows sampling subnetworks whose weights are the most
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relevant for classification. The proposed contribution also

relies on a new mask parametrization, dubbed as Arbitrar-

ily Shifted Log Parametrization (ASLP), that allows a better

conditioning of the gradient and thereby mitigates numerical

instability during mask optimization. Besides, when com-

bining ASLP with a learned weight rescaling mechanism,

training is accelerated and the accuracy of the resulting sub-

networks improves as shown later in experiments.

2. PROPOSED METHOD

Let fθ be a deep neural network whose weights defined as

θ = {w1, . . . ,wL}, with L being its depth, wℓ ∈ R
dℓ×dℓ−1

its ℓth layer weights, and dℓ the dimension of ℓ. The output of

a given layer ℓ is defined as

zℓ = gℓ(wℓ ⊗ zℓ−1), (1)

being gℓ an activation function and ⊗ the usual matrix prod-

uct. Without a loss of generality, we omit the bias in the defi-

nition of (1).

2.1. Stochastic Weight Sampling

Given a network fθ , weight pruning consists in removing con-

nections in the graph of fθ. A node in this graph refers to a

neural unit while an edge corresponds to a cross-layer connec-

tion. Pruning is usually obtained by freezing and zeroing-out

a subset of weights in θ, and this is achieved by multiplying

wℓ by a binary mask mℓ ∈ {0, 1}
dim(wℓ). The binary en-

tries of mℓ are set depending on whether the underlying layer

connections are kept or removed, so Equation (1) becomes

zℓ = gℓ((mℓ ⊙wℓ)⊗ zℓ−1). (2)

Here ⊙ stands for the element-wise matrix product. In this

definition, the masks {mℓ}ℓ are stochastic and sampled from

a Bernoulli distribution.

Straight Through Estimator. Zhou et al. [25] consider

a Bernoulli parametrization of {mℓ}ℓ in order to sample

masks in Equation (2). However, due to sampling which is

not a differentiable operation, optimizing directly {mℓ}ℓ is

not possible. Existing solutions, including [25], rely on the

Straight Trough Estimator (STE), already described in [26].

The definition of {mℓ}ℓ is instead based on another latent

parametrization {m̂ℓ}ℓ, detailed subsequently, and obtained

by applying a sigmoid function σ(.) to m̂ℓ. This allows

optimizing m̂ℓ using gradient descent while considering the

following surrogate of Equation (2)

zℓ = gℓ((σ(m̂ℓ)⊙wℓ)⊗ zℓ−1). (3)

Authors in [25] use the STE in order to back-propagate the

gradient and to update the parameters of the Bernoulli distri-

bution m̂ℓ with gradient descent.

Gumbel-Softmax. In what follows, we consider an alter-

native STE based on Gumbel Softmax (GS) [28]. The pro-

posed method, dubbed as Straight Through Gumbel Softmax

(STGS), is based (i) on a variant of GS, and also (ii) on

the argmax operator which allows sampling from a categor-

ical distribution, as the limit of GS (i.e., when its softmax

temperature approaches zero). Let z be a categorical ran-

dom variable, associated with n class probability distribution

P = [π1, . . . , πn]. The Gumbel Softmax estimator (i) takes a

vector of log-probabilities log(P) = [log(π1), . . . , log(πn)]
as an input, (ii) disrupts the latter with a random additive

noise sampled from the Gumbel distribution, and (iii) takes

the argmax, yielding a categorical variable. More formally,

following [28], the value q of our categorical variable z is

obtained as

q = argmax
k

[log(πk) + gk], (4)

with gk being i.i.d sampled from the Gumbel distribution.

In what follows, and unless stated otherwise, we omit ℓ

from wℓ and we write it for short as w. Let wij be the

weight associated to the i-th and j-th neurons respectively

belonging to layers ℓ − 1 and ℓ; we define a two-class cat-

egorical distribution Pij on {0, 1} as Pij(z = 1) = π
ij
1 ,

and Pij(z = 0) = π
ij
2 with π

ij
1 = pij , π

ij
2 = 1 − pij

and pij being the probability to keep the underlying con-

nection. In other words, keeping the weight wij (or not)

in the sampled topology is a Bernoulli trial with a proba-

bility pij . Considering Equation (4), a binary mask mij

is defined as 1{qij=1}, 1{} being the indicator function and

qij = argmaxk∈{1,2}

[

log(πij
k )+g

ij
k

]

. Thanks to STGS, it be-

comes possible to learn pij for each weight through stochastic

gradient descent (SGD). However, optimizing pij (with SGD)

raises a major issue as pij may not be appropriately bounded

and thereby log(pij) and log(1 − pij) would also be unde-

fined. On another hand, solving constrained SGD, besides

being computationally expensive and challenging, may result

into worse local minimum. In order to overcome all these

issues, one may consider an alternative reparametrization

pij = σ(m̂ij), with m̂ij being a latent mask variable and

σ the sigmoid function which bounds pij in [0, 1]. However,

this workaround suffers (in practice) from numerical instabil-

ity in gradient estimation (due to the log and the sigmoid) and

is also computationally demanding.

Arbitrarily Shifted Log Parametrization. Another alter-

native is to consider m̂ij = log(pij) and log(1 − pij) =
log(1− exp(m̂ij)) and learn the underlying mask. However,

this reparametrization is also flawed in the same way as the

aforementioned sigmoid reparametrization. In what follows,

we propose an equivalent formulation which turns out to be

highly effective and numerically more stable. Considering

[

m̂ij

0

]

= log
(

Pij(.)
)

+ c =

[

log(pij) + c

log(1− pij) + c

]

, (5)



in the above definition, instead of using log(Pij(.)), we

consider log(Pij(.)) + c as an input of the argmax in Equa-

tion (4). The constant c ∈ R ensures that if m̂ij > 0, then

log(pij) ∈] −∞, 0] ⇔ pij ∈ [0, 1]. This is enforced by set-

ting the second coefficient of Pij to 0, rather than computing

it explicitly. The formulation of Equation (5) is theoretically

equivalent to the aforementioned sigmoid reparametrization.

Indeed, solving the system of Equation (5) w.r.t. m̂ij yields

pij = σ(m̂ij). Differently put, the formulation in Equa-

tion (5) considers a reparametrization m̂ij = log(pij) + c

which is strictly equivalent to the sigmoid one while being

computationally more efficient and also stable. Note that

adding any arbitrary constant c to the log-probability makes

the outcome of Gumbel-Softmax sampling and argmax in-

variant.

2.2. Weight Rescaling

Subnetwork selection may disrupt the dynamic of the forward

pass [29, 27], and thereby requires adapting weights accord-

ingly. Dynamic weight rescale (DWR) [25], and scaled Kaim-

ing distribution [27] are two known mechanisms that adapt

the weights of the selected subnetworks. However, some of

these heuristics, besides being handcrafted, rely on the strong

assumption that rescaling should be proportional to the prun-

ing rate. In what follows, we consider a new weight adapta-

tion mechanism, referred to as Smart Rescale (SR). Instead of

handcrafting this rescaling factor proportionally to the prun-

ing rate (as achieved for instance in [25]), SR is learned lay-

erwise and provides an effective (and also efficient) way to

adapt the dynamic of the forward pass without retraining the

entire weights of the selected subnetwork. Indeed, this rescal-

ing ends up reducing the amount of epochs needed to reach

convergence and also improving accuracy (at some extent) as

shown later in experiments.

With SR, the ℓ-th layer network output becomes

zℓ = gℓ(sℓ × (mℓ ⊙wℓ)⊗ zℓ−1), (6)

where sℓ refers to the rescaling factor of the ℓ-th layer (see

also algorithm 1). Smart Rescale increases the flexibility

of subnetwork selection and adaptation compared to DWR

(which is bound to the pruning rate). Moreover, scaling

factors obtained with SR vary smoothly — and this makes

training more stable with stochastic gradient descent (SGD)

— compared to the ones obtained with DWR which are again

set to the observed pruning rates, and changes of the latter

are more abrupt due to stochastic mask sampling.

3. EXPERIMENTS

In this section, we show the performance of our method on

the standard CIFAR10 and CIFAR100 datasets. They consist

of 60k colored images of 32 × 32 pixels each. Training,

Algorithm 1 Forward pass for our method

Require: A network fθ, with weights {wℓ}ℓ, ASLP {m̂ℓ}ℓ,
and input training data {(xk,yk)}k

1: qi,j ← argmax

[

m̂i,j + gi,j
0 + g′i,j

]

⊲ Sampling of a topology

2: mij ← 1{qij=1} ⊲ Giving the masks mi,j their values

3: Return L
(

fθ({xk}k; {sℓ(mℓ ⊙wℓ)}ℓ), {yk}k
)

⊲

Computing the loss with masked weights and SR

validation and test sets include 45k, 5k and 10k images re-

spectively.

In order to demonstrate the effectiveness of our method, we

chose the widely used SGD optimizer with a momentum of

0.9 and a learning rate of 50. Faster convergence is obtained

with higher learning rates, however, the latter also lead to

worse observed accuracy. During training, the maximum

number of epochs is set to 1000 and early stopping is trig-

gered if the accuracy on the validation set stops improving

during 100 epochs. In all these experiments, neither weight

decay nor ℓ2 regularization are applied. See implementation

details and our code on the ASLP GitHub [30].

3.1. Performance and comparison

The accuracy of our method is evaluated on subnetworks

whose topology corresponds to connections with (trained)

probabilities larger than 0.5; in other words, if the binary

event of keeping a connection is more likely than its removal.

This setting is referred to as thresholding. As a matter of

comparison, we also consider the setting in [25] which con-

sists in sampling ten different subnetworks and evaluating

an average accuracy over these subnetworks. This setting is

referred to as averaging. In these experiments, we use the

same networks as [25, 27] (originally introduced by Frankle

and Carbin [17]) namely Conv2, Conv4 and Conv6 which are

variants of VGG16.

Tab. 1 shows a comparison of our method against [25, 27].

These results show means of five independent runs; each run

corresponds either to “thresholding” or “averaging”. These

performances show a consistent gain (in accuracy) of our

subnetwork selection. We also observe that “thresholding”

is already effective compared to “averaging”; indeed, our

method reaches a high accuracy despite learning a single sub-

network topology, and this makes it also highly efficient for

training compared to the related work [25, 27].

Furthermore, our method and [25] do not impose a prun-

ing rate. The optimal pruning rate is found during optimiza-

tion and is is arround 51%, whereas [27] enforces a 50%

pruning rate (k = 50%). Thus, the networks capacities are

comparable.



Cifar 10 Cifar 100

w/o data augmentation with data augmentation (w.d.a) w.d.a

∅ WR SC WR+SC ∅ WR SC WR+SC WR+SC

Conv2

[25] (averaging) 64.4 65.0 66.3 66.0 - - - - -

[27]1(k = 50%) - - - - - 71.5 71.7 40.9

Our ASLP (averaging) 68.2 66.9 68.3 66.5 76.0 76.6 76.8 77.3 -

Our ASLP (thresholding) 68.7 67.8 68.4 67.1 75.9 76.4 77.5 77.5 43.3

Conv4

[25] (averaging) 65.4 71.1 66.2 72.5 - - - - -

[27]1 (k = 50%) - - - - - - 81.6 80.5 51.1

Our ASLP (averaging) 70.6 71.8 69.5 71.8 83.4 84.4 83.7 84.1 -

Our ASLP (thresholding) 71.5 72.8 70.2 72.7 83.7 85.0 84.5 84.8 51.7

Conv6

[25] (averaging) 63.5 76.3 65.4 76.5 - - - - -

[27]1 (k = 50%) - - - - - - 85.4 85.1 53.8

Our ASLP (averaging) 72.9 76.1 71.9 75.6 85.3 86.2 85.3 86.2 -

Our ASLP (thresholding) 73.7 77.0 72.6 76.6 86.0 86.9 86.3 86.9 52.8

Table 1. Comparison of our method against [25] and [27] on Conv2, Conv4 and Conv6. These results are averaged through five independent runs. ”WR”

(Weight Rescale) refers to “Dynamic Weight Rescale” or “Smart Rescale” depending on which methods is used (respectively [25] or our proposed ASLP).

Again, ”SC” refers to the “Signed Constant” distribution. The latest results on CIFAR 100 were recently obtained with data augmentation and WR+SC.

3.2. Ablation study

In this section, we discuss the impact of all the components

of the method when taken individually and combined, namely

the use of weight rescaling (WR): either DWR or our pro-

posed SR. We also consider another criterion: signed constant

(SC) which consists in replacing weights in a given layer by

the products of their signs and the standard deviation of their

original weight distribution. We show all these results with

and without data augmentation, which is composed of the

combination of zero-padding, random crops and random hor-

izontal flips. Note that pixel intensities are normalized from

their original values in [0, 255] to [0, 1].
From the results in table 1, we observe a clear gain of our

method alone w.r.t. [25] and the use of SR increases further

its accuracy (excepting Conv2 w/o data augmentation). The

gain in performances increases significantly with Conv6 and

reaches up to 4 points even when no data augmentation is

used. Note that the use of data augmentation attenuates, at

some extent, the effect of SR on larger networks (conv4 and

Conv6). Nonetheless, as discussed in Sec. 3.3, the positive

impact of SR resides also in training efficiency. In contrast

to SR, signed constant improves accuracy by a small margin

when combined with data augmentation.

3.3. Computational efficiency

DWR requires rectifying weights layerwise using the inverse

of the observed (computed) pruning rates. These layerwise

evaluations introduce a significant overhead at each training

epoch. In contrast, SR consists in simple products involv-

ing one scalar per layer. When training Conv4, we found

(on average) that enabling DWR increases epoch runtime by

1Performances for [27] are reported with the optimizer described in

Sec. 3. It is possible to improve performances by tuning the learning rate

scheduler but this is out of the scope of this paper.

0.2s while our SR by 0.13s only, so SR speeds up training

overhead by 35% compared to DWR. When data augmen-

tation and signed constant are used, SR allows a significant

gain in the number of training epochs. Indeed, enabling SR

on Conv4 saves (on average) 19.7% training epochs (8.2%,

14.0% on Conv2 and Conv6 respectively) before converging

to its highest accuracy. Finally, our “thresholding” setting

not only improves accuracy but makes subnetwork selection

(training) and also inference more efficient compared to the

related work [25, 27], as this selection is again achieved once

and thereby only one subnetwork is applied during inference.

4. CONCLUSION

In this paper, we introduce a novel method that extracts ef-

fective subnetworks from larger networks without training

its weights. The proposed method optimizes a probability

distribution which measures the relevance of weights, and

only those with the highest relevance define the topology of

the selected subnetworks. An efficient and effective weight

rescaling mechanism is also introduced and allows rectifying

the parameters of the selected subnetworks which improves

performances and reduces the number epochs needed to

reach convergence. Experiments conducted on the standard

CIFAR10 and CIFAR100 datasets show the effectiveness of

our subnetwork selection method w.r.t. the related work. Fu-

ture work includes the study of the scalability of the proposed

method on more complex datasets and other larger networks.
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