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ABSTRACT

Temperature is a widely used hyperparameter in various tasks
involving neural networks, such as classification or metric
learning, whose choice can have a direct impact on the model
performance. Most of existing works select its value using
hyperparameter optimization methods requiring several runs
to find the optimal value. We propose to analyze the impact of
temperature on classification tasks by describing a dataset as a
set of statistics computed on representations on which we can
build a heuristic giving us a default value of temperature. We
study the correlation between these extracted statistics and the
observed optimal temperatures. This preliminary study on
more than a hundred combinations of different datasets and
features extractors highlights promising results towards the
construction of a general heuristic for temperature.

Index Terms— temperature, hyperparameter, heuristic,
softmax, cross-entropy

1. INTRODUCTION

The performance of a machine learning algorithm applied to a
computer vision task is highly dependent on the choice of its
hyperparameters. Among these, the temperature is a scaling
factor often used in a neural network linked to the softmax
layers, the latter being usually followed by a cross-entropy
(CE) like loss function. Intuitively, the temperature (in allu-
sion to statistical mechanics) is introduced to choose the level
of uniformity of the distribution. Since most deep classifica-
tion models involve both softmax layer and CE like loss func-
tions for their training, determining an optimal temperature
for a particular task can then have a broad impact.

For example, this parameter is widely considered in var-
ious tasks such as knowledge distillation, classification, text
generation, self-supervised and metric learning [1, 2, 3, 4, 5,
6,7,8,9, 10, 11] Traditionally, in most of these domains and
in the underlying applications, the temperature is determined
empirically, with a value that can be constant (typically from
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a grid search) or evolve dynamically over iterations, in the
same vein as the learning rate parameter. Nevertheless, such
strategies for determining a good temperature may be subop-
timal or computationally too cumbersome. Surprisingly, there
are very few studies proposing strategies for determining an
optimal temperature. In this paper, we focus on the particu-
lar problem that, given a classification task, we need to find a
correlation between an optimal value for the temperature and
statistics describing the dataset such as complexity, dimen-
sion, number of classes, etc.

2. RELATED WORKS

The temperature hyperparameter is typically employed in the
softmax layer to control the uniformity of the distribution. Al-
though the use of a good temperature has shown its impact in
many computer vision tasks, the existing strategies to define
such a temperature parameter are quite limited.

The first way to proceed is to consider a constant temper-
ature throughout the training. The choice can be done em-
pirically, as in [1, 8, 9]. It can also be considered as a fixed
hyperparameter to be optimized via a grid search in a field
of possible values, but this implies significant computational
requirements and leads to different hyperparameters for each
dataset and architecture. A simple heuristic can also allow to
fix the parameter as proposed in the Transformers [12] with
V/d, d being the dimension of the queries and the key vectors.

Other strategies rely on dynamic temperature adjustment
during learning iterations. In this case, the elements of the
temperature can evolve at each epoch using a scheduler [4], in
the manner of the learning rate to refine the network. In [13],
the authors also showed that a batch normalization rescaled by
\/&, with d the number of dimensions of embeddings, worked
slightly better than a simple L2 normalization, and can also
lead to more embedding vectors. Dynamic adjustment of tem-
perature can also be done by learning it as a standard param-
eter [14, 15]. This usually requires additional steps like clip-
ping or adding exp to avoid negative values. Furthermore, the
learned temperature strongly depends on the learning rate hy-
perparameter.



An alternative approach is to determine the temperature
value analytically. The authors of [16] propose both an eval-
uation function designed to measure the effectiveness of a
temperature parameter and an iterative updating rule to de-
termine the optimal temperature value. However, their work
suffers from two drawbacks: (1) Authors introduce a novel
hyperparameter A in the temperature formulation, A being an
improvement factor affecting the number of iterations and the
selection of the optimal temperature; (2) It was designed for
the D-armed bandit problem in reinforcement learning and
only tested on synthetic data.

Another work by [17] proposes a theoretical lower bound
formulated as a function of the loss value and the number of
classes with a loss smaller than ¢, ¢ supposed to be around
10e — 4. Interestingly, unlike [12, 13], their solution does not
derive any benefit from or rely on any information on the em-
beddings dimensions. However, since temperature determi-
nation was not the main part of their contribution, no bench-
mark was made to compare the proposed theoretical lower
bound with other temperature values. Finally, the assumption
on such a low loss value does not correspond to real cases at
the beginning of the learning.

While some of the previously mentioned heuristics are
based on feature dimensions, others use the number of classes
or class separability measures. None of them have been de-
signed specifically for use in a classification task or have been
evaluated on this particular hyperparameter to demonstrate
the effectiveness of the proposed heuristic. Other heuristics
could be derived from other criteria reflecting information
such as the difficulty of the dataset to be classified. For ex-
ample, [18] proposes to estimate the difficulty of classifying
datasets from six classes of measures based on information
such as feature-based, neighborhood or dimensionality mea-
sures. However, most of proposed measures have a complex-
ity at least equal to O(n?), with n the number of points in the
dataset, making these measures difficult to scale up to larger
datasets. Similarly, we seek to describe each dataset by a set
of statistics computable in a reasonable amount of time. We
then propose to determine which variables / statistics are re-
ally correlated with the best empirical temperature, in order
to propose a simple heuristic based on these dataset statistics.

3. METHODOLOGY

3.1. Rescaling Cross-Entropy with temperature scaling

Inspired by the formulation of [13], we start from the same
basic observation as they do. We define a set of IV samples
labeled {(z1,v1),-- -, (zn,yn)}, where 2; € R? is the rep-
resentation (embedding) of the i-th sample, d being the di-
mensionality of z;, and y; € {1,...,C} is the category la-
bel of the sample z;, C being the total number of categories.
Let us consider W = [wy, ..., wc]| where w; € R? is the
weights associated with the class C;, we define z; = ;W

withé € {1,..., N}. In our case, we focus on the learning of
the weights W. In the same vein as [2, 7, 8, 17], we removed
the bias term, and we consider the inputs z and weights W
Lo normalized. We optimize the cosine similarity since this
choice is both popular in classification and metric learning.
The probability that a sample = belongs to the category
c €{1,...,C} can be predicted by the softmax function as:

exp(az.)

—_— (1)
S5, exp(az;)

plefz, o) =

To simplify the notation, we note « = 1/T as the inverse
of the temperature 7" to choose the level of uniformity of the
softmax output distribution.

Assuming that the ground truth distribution of the train-
ing sample is g(c|z), generally encoded in a one-hot vector
(which equals 1 if ¢ = y and O otherwise), the cross-entropy
loss with respect to z is defined as:

c
L(z,) = =) log(p(clz,a))q(c|z) 2)
c=1
and the gradient with respect to the weight w, is:
oL
P a(plez, a) — q(clz))z " 3)

From Eq. 3, we can observe that the temperature has two
effects in the gradients. The first is, as mentioned earlier, to
control the probability distribution p(c|x,a) € [0,1]. The
second effect is simply to multiply gradients by the value of
the temperature «. As « often lies (empirically) in [1,250],
this last effect is harmful during learning since it rescales the
learning rate with this value; this can lead to divergence. To
cancel this effect and study only the impact of the choice
of distribution during training, we propose to normalize the
cross-entropy loss function by a constant of value equal to o.

3.2. Finding correlations

As previously mentioned and illustrated, the temperature has
a strong impact on the final accuracy but poses different diffi-
culties in finding the optimal value. We then look for a heuris-
tic h, a universal rule, to select a temperature « close to its
optimal value, denoted o*, that is general across datasets and
representations. We need to represent each dataset of embed-
dings e € £ in a common space S by using some statistical
features s € R™ computed over £ with m the number of sta-
tistical features. Our goal is to find the best correlation with
the observed optimal temperature in order to design a heuris-
tic for temperature.

To ensure our heuristic will be sufficiently general and
not just specialized for particular cases such as small num-
ber of classes or large embedding sizes, we need to cover as
many as possible different cases. To this end, we construct
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Fig. 1. Coverage between all combinations of feature extrac-
tors and datasets. The size of the circles represents the best
accuracy achieved for each dataset.

a list of datasets with different numbers of classes and a list
of features extractors with different feature sizes / discrim-
ination powers. From each pair (dataset, feature extractor)
we build a dataset of embeddings e; divided in training and
validation sets el"®™" e%e!. For each set of embeddings e;,
we compute a description by extracting the statistical fea-
tures s and empirically find the corresponding optimal tem-
perature & = arg max,, iy, Accuracy(ey®) for a selected
from a given set of possible temperatures and W, the weights
learned on e!"*" with a given temperature «. Thus, to each
pair (dataset, feature extractor) is associated the pair (embed-
ding dataset statistical features, optimal empiric temperature)
noted: (S;, &7).

In order to find our heuristic 4(+) several options are possi-
ble. The simplest one would be to consider an affine function
on the form a - s; +b, with s; the most correlated variable in s
to our optimal temperature. If a strong enough correlation ex-
ists, this would be the simplest heuristic possible. However,
more than one variable may be needed to find this correla-
tion. We therefore investigate the strength of the correlation
between each statistic independently and a linear combination
of our statistical features to the optimal temperature.

4. EXPERIMENTAL STUDY

4.1. Datasets, feature extractors selection

In order to find a generalizable heuristic covering a wide
range of cases for a classification task, we selected 12
datasets and 9 feature extractors (Fig. 1). The number
of classes ranges from 10 to 1854 while the dimension-
ality of the features ranges from 256 to 2048. The se-
lected datasets are MNIST, CIFAR10, DTD, PhotoArt, CI-
FAR100, 105-PinterestFaces, CUB200, ImageNet-R, Cal-
tech256, FSS1000, ImageNetMini, THINGS, containing re-
spectively 10, 10, 47, 50, 100, 105, 200, 200, 256, 1000,
1000, 1854 classes. Regarding the feature extractors, dif-
ferent architectures have been selected with different pre-
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Fig. 2. Impact of temperature on the accuracy of the dataset
THINGS [22]. For each temperature, we learned the classifi-
cation layer and performed 20 learning for 100 epochs.

trainings, in order to cover a large number of dimensions
while decorrelating this aspect from the network perfor-
mance. For example, FaceNet is expected to perform poorly
on CIFAR datasets since it is learned on a face recognition
task while a ResNetl8 pretrained on ImageNet is expected
to perform better on natural images while being weaker on
105-PinterestFaces. The feature extractors used are: AlexNet
[19] and ResNet-{18, 50, 101} [20] pre-trained on ImageNet,
ResNet-{34, 152} [20] randomly initialized, FaceNet [21]
pre-trained on VGGFaces2 and CLIP-{RN50, ViT32_b} [14]
pre-trained on millions of image-text pairs. The embedding
dimensions are respectively: 256, 512, 2048, 2048, 512,
2048, 1792, 1024, 768.

4.2. Statistical features selection

In order to find the hidden relationship between a given
dataset and the associated optimal temperature we need to
describe each dataset by a feature vector s in a common space
S. Since, as we have seen previously, very different heuristics
are proposed to set up the temperature, we selected various
features s;: the dimensionality of embeddings e (dim), the
number of output classes (n_classes), the mean value of all
embeddings values (mean), the variance of all embedding
values (var), the trace of the average matrix of all intra-class
covariance matrices (sb_trace), the trace of the average of
all inter-classes covariances matrices (sw_trace), the mean
squared error (MSE) between the features correlation matrix
and the identity (feats_corr), the mean cosine similarity be-
tween each dimensions pair (feats_cos_sim), the number of
samples in the training set (n_samples), the average number
of samples per class (avg_samp_class) and the percentage of
dimensions to be retained for a given explained variance (as
in PCA) of 50, 75, 80, 90, 95, 99 (pca_%), the average of
all embedding values (train_mean) and the standard deviation
(train_std), the average kurtosis computed on each dimension
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Fig. 3. Absolute value of Pearson correlation between each
dataset statistic and the optimal empirical temperature.

(avg_kurtosis), and the average Shapiro-Wilk value testing
the normality of each dimension (avg_normality). Three other
popular metrics used in clustering are used such as the Sil-
houette (silhouette), Calinski Harabasz (calinski_harabasz)
and the David Bouldin (david_bouldin) score using the true
labels as cluster prediction to obtain measures of the quality
of the representation.

4.3. Empiric study of correlations

Once we have extracted the embeddings from various datasets
and feature extractors, we need to find the best temperature
usable for each case. To do this, we split each dataset of
embeddings into training and testing sets and trained the
model during 1000 epochs with a batch of size 2048 for a
given temperature. We used the default temperature of 1
and temperatures ranging from 5 to 250 with a step of 5:
a € {1,5,...,245,250}. By tracking the accuracy on the
test set, we are able to observe the best achievable accuracy
for each temperature. We used the rescaled CE loss presented
in Sec. 3.1 which allows strong improvements in accuracy
over high temperatures using the SGD optimizer as shown in
Fig. 2. The latter allows us to observe experimentally the ad-
vantage of isolating the peaking distribution effect. However,
we found that this had no impact during training when using
a smarter optimizer like Adam [23].

In order to find a heuristic for setting a default tempera-
ture, we need to find strong correlations from the pairs of opti-
mal empiric temperatures and datasets statistics. Fig. 3 shows
the absolute correlation between each statistical value and the
temperature. We found that the most interesting variable was
the measure of correlation between embedding features. To
increase the correlation, we propose to learn a linear regres-
sion from our statistics and the optimal temperature, using a
cross-validation strategy. The latter omits all sets of embed-
dings of a dataset (e.g. MNIST) during the learning phase in
order to use them in the validation of the found linear combi-
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Fig. 4. Correlation between observed optimal temperature
versus predicted temperature.

’ Method H Med. Corr. \ Avg. Corr. (&£ std) \ p-value ‘
Best Stat 0.9262 0.851 (£ 0.159) 0.031
4-Best Stats 0.9265 0.865 (£ 0.131) 0.018
All Stats 0.9563 0.884 (£ 0.124) 0.014

Table 1. Observed correlations between the most correlated
variable, a linear combination of 4 variables and a linear com-
bination of all variables with the optimal empiric temperature.

nation. After that, we repeated this procedure on a subset of
the most correlated statistics. The scores are shown in Tab. 1.
Finally, we fitted a linear regression on all points whose cor-
relation between our predicted temperature and the empirical
optimal temperature is shown in Fig. 4 Obtained results are
promisingand statistically significant with a Pearson’s corre-
lation of 0.9563 and a p-value of 0.014 < 0.05.

5. CONCLUSION

In this paper, we have shown the importance of the tem-
perature hyperparameter for finetuning a linear classifier on
learned representation. We showed that cross-entropy loss
can suffer from high temperature if not properly re-scaled.
After re-scaling the cross-entropy, we proposed to study the
correlations between the optimal empirical temperature ob-
served on many datasets, over a wide range of classes and di-
mensions, and the statistics computed on the representations
of the dataset. In this way, we revealed that some heuris-
tics (such as the dimensionality of embeddings) had little
correlation with the optimal temperature while a measure of
correlation between features showed strong correlations. We
found that appropriate selection and combination of statistics
could improve the correlation with the best temperature. We
suggest enhancing this pipeline in subsequent work [24] and
applying it to other issues, such as identifying the elements
of representation learning that will result in high accuracy by
predicting it with symbolic regression.
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