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Abstract

Video-to-Text (VTT) is the task of automatically gener-
ating descriptions for short audio-visual video clips, which
can support visually impaired people to understand scenes
of a YouTube video for instance. Transformer architectures
have shown great performance in both machine translation
and image captioning, lacking a straightforward and repro-
ducible application for VIT. However, there is no compre-
hensive study on different strategies and advices for video
description generation including exploiting the accompa-
nying audio with fully self-attentive networks. Thus, we
explore promising approaches from image captioning and
video processing and apply them to VIT by developing a
straightforward Transformer architecture. Additionally, we
present a novel way of synchronizing audio and video fea-
tures in Transformers which we call Fractional Positional
Encoding (FPE). We run multiple experiments on the VA-
TEX dataset to determine a configuration applicable to un-
seen datasets that helps describing short video clips in nat-
ural language and improved the CIDEr and BLEU-4 scores
by 37.13 and 12.83 points compared to a vanilla Trans-
former network and achieve state-of-the art results on the
MSR-VTT and MSVD datasets. Also, FPE helps increase
the CIDEr score by a relative factor of 8.6 %.

1. Introduction

Recurrent Neural Networks are a common architecture
to model language generation tasks. Especially Long short-
term memory (LSTM) Networks in combination with Deep
Convolutional Neural Networks are used to generate de-
scriptions of images [22,23,46]. The architectures have ma-
tured over the years and introduced self-attention for LSTM
Layers [53]. These methods have also become more and
more popular for machine translation tasks, whose encoder-
decoder architecture originally inspired the Show and Tell
model of Vinyals et al. [46]. Recently, Vaswani et al. [44]
introduced a simple network architecture that is solely

based on attention mechanisms and gets rid of convolutions
altogether. Given the massive improvements in the task of
sequence transduction and machine translation, it is natural
to adapt this technique to Image Captioning [9].

In this work, we focus on the Video-to-Text (VTT) task,
which is actually quite similar to Image Captioning. We de-
velop a model that is easy to implement and yet generates
high-quality captions. We start with a Transformer modi-
fied to cope with video inputs as baseline and investigate
several improvements by adopting various techniques from
the domain of Image Captioning. We focus on promising
extensions in order to develop a model which is easy to re-
produce. Ultimately, we present a way to easily align video
and audio features independent of their respective sampling
rates. We align the features by extending the Positional En-
coding to support fractional positions.

Our contributions are as follows:

* We develop a simple Transformer model for generat-
ing descriptions for short video clips. We reuse and
adopt promising approaches from Image Captioning
and human action classification for video clips that
does not consist of an ensemble of multiple models.

* We present a combination of learning rate schedules
that increases performance and shortens convergence
time for VTT.

* Finally, we introduce Fractional Positional Encoding
(FPE), an extension to the traditional Positional En-
coding, which allows to synchronize video and audio
frames dependent on their respective sampling rate.
By using FPE, we improve our CIDEr score by 37.13
points in comparison to the baseline. Furthermore,
we achieve state-of-the-art scores on the MSVD and
MSR-VTT datasets.

2. Related Work

Generating captions automatically from images is a task
that has been widely studied. Most image captioning



models are inspired by the machine translation encoder-
decoder architecture and come with a vision CNN en-
coder and a language generating Recurrent Neural Network
(RNN) [12,23,46]. Shortly after these inital works on Im-
age Captioning, visual attention mechanisms have shown to
benefit image description generation [2, 53].

Video-to-Text (VTT) is the natural continuation to Im-
age Captioning. Instead of generating short descriptions
for still images, VTT tries to infer descriptions from short
video clips. Pan et al. [33] use an encoder that utilizes
3D and 2D CNN features while the decoder is LSTM
based. Many other works [13—15] make use of 2D and/or
3D features in the encoder and generate the descriptions
with an LSTM decoder. Similar to Image Captioning,
works in VTT have adopted traditional attention mecha-
nisms [7,21,28,30,37,47-49,55,57] and use object-level
features [1, 17,55,57] in the encoder to improve the gener-
ation of descriptions.

One big leap for machine translation was the introduc-
tion of the Transformer architecture by Vaswani et al. [44].
By replacing recurrence with self-attention modules, they
better utilized long-term dependencies and improved the
state-of-the-art at a fraction of the training cost. Similar to
the recurrent machine translation models, the Transformer
architecture was quickly adopted in the task of image cap-
tioning [9, 19,26, 54].

As Transformers operate on sequences of features, it
is easy to modify this architecture to describe short video
clips. Various other video description datasets depicting
everyday activities have been presented [3, 6,32, 52]. In
this work, we mainly focus on the VATEX Captioning
dataset [27], which has also been used in the Video-to-Text
(VTT) task [17,27,42,56-58]. Furthermore, we validate
our models on the MSR-VTT [52] and MSVD [6] datasets.

3. Model

We utilize a slightly modified Transformer [44] as our
baseline model. The Transformer architecture is built
around the idea of transforming sequences from one domain
to another, i.e., the original Transformer is a machine trans-
lation model that operates on sequences of tokens (words).
However, we work on a different input domain (i.e., video
clips) instead of sentences. Thus, we modified the encoder
of the original Transformer architecture by altering its in-
puts. For the baseline architecture, we feed the encoder
with embedded images x = (x1,...,x,) for every video
frame instead of embedded tokens. After embedding the
image features, we add the positional encoding on top of
these embeddings in order to maintain information about
absolute and relative ordering of the sequence. As videos
are sequences of frames, we can adopt the same Positional
Encoding that Vaswani et al. [44] utilize for sequences of
tokens. Our baseline model has NV = 8 encoder layers and

outputs continuous representations z = (z1,. .., z,) of di-
mension dyoqel = 512. Our decoder also has N = 8 layers
and generates an output sequence y = (Y1, .-, Ym). We
use a learned word embedding to convert the input tokens
to vectors of dimension dy,oqel and share the weight matrix
with a learned linear projection layer to predict the proba-
bilities of the next word [39, 44]. Given the embedded to-
kens and z, the decoder generates its output one word y; at
a time. Similar to most encoder-decoder sequence models,
the decoder uses the output of the previous step as input to
the current step in an auto-regressive way when generating
text. Thus, we simply optimize the cross-entropy loss for
every target sentence .S with words Sy during training

L(S) = —Zlogyt[S’t]. ey
t=1

Still, our adapted Transformer architecture is a model de-
signed with Natural Language transduction in mind. There-
fore, in order to gradually improve the baseline model, we
employ techniques and methods from the related task of Im-
age Captioning and adapt the architecture to use video clips
as inputs. Additionally, we introduce the novel Fractional
Positional Encoding that allows to synchronize audio-visual
frames in a Transformer encoder. In the following, we mo-
tivate the changes made to the baseline architecture and pre-
processing in order to improve the quality of the generated
sentences.

3.1. Memory-Augmented Encoder

The weights learned for the self-attention layers only de-
pend on pairwise similarities between the projected inputs,
i.e., in our case the self-attention in the encoder only models
pairwise relationships between single frames. This prop-
erty of the self-attention in Transformers leads to a limita-
tion. That is, we cannot memorize knowledge about rela-
tionships between frames that later help to describe con-
tents of unseen videos. To mitigate this issue, we make
use of the memory-augmented encoding [9], which encodes
multi-level visual relationships with a-priori knowledge. In
the original work, Cornia et al. [9] use a persistent, learn-
able memory vector which is concatenated to the key and
value of the self-attention blocks of the Transformer’s en-
coder. These memory vectors allow to encode persistent
a-priori knowledge about relationships between image re-
gions. In contrast to [9], we work with video sequences
instead of still images with regions. Adapted to our archi-
tecture, we can encode prior knowledge about relationships
between frames for each training video, which later can be
transferred to unseen video samples.

3.2. Inflated 3D ConvNet

A quick and naive way to implement a simple VTIT
model is to use frame-by-frame features extracted by a CNN
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Figure 1. Example tokenization of a training sample from the VATEX dataset (Video ID: tXzq4vvGabk) with both default tokenization and
WordPiece tokenization. WordPiece tokenization splits up rare words into subwords.

designed. However, some actions in a video clip can only be
inferred by looking at temporal changes. A standard image-
based CNN never gets to see what happens before or after
a given frame and cannot understand these kinds of seman-
tics, thus, is not able to reflect them in the image features.
One way to extract features over multiple frames is using
3D convolutions that not only operate on the spatial dimen-
sions but also convolve over the time dimension.
Therefore, we use the well-known Inflated 3D ConvNet
(I3D) [5] architecture in order to provide the encoder with
better input features. In particular, we extract features from
the videos with the RGB-I3D model, which was pretrained
on the Kinetics Human Action Video dataset [24].

3.3. Subword and BERT Vocabulary

For the baseline model, we implement an ordinary dic-
tionary that takes the ny,. most frequent words into account,
i.e., we order the words/tokens within the captions descend-
ing according to their frequency (e.g., a and the are the two
most frequent words). However, an ordinary dictionary is
limited by its size, e.g., 12,000 words. Rare words that are
important for understanding some sentences are completely
left out and replaced by an <unk> token.

A possible solution for this problem is the WordPiece tok-
enizer [51], which we employ in this work. The WordPiece
tokenizer is a model optimized to maximize the language-
model likelihood of the training data while minimizing the
corpus size given a number of desired tokens. The goal is to
represent rare words by splitting them up into word-pieces,
which can later be recovered. For our vocabulary, we use
the default BERT [10] tokens. In Figure 1, we depict a
sample tokenization of one training sample. The default
tokenization, which we limit to nv,. = 12000 words can-
not tokenize rare words such as USS, liberty, shipwreck or
WWII. When using the WordPiece tokenizer with the BERT
dictionary, we see that all words can be represented with
tokens. Especially, the rare word shipwreck is split up into
three subwords (ship, ##wr, ##eck). The leading ## indi-

cate a split-up word and we can reconstruct the whole word
shipwreck from the three tokens.

3.4. Learning-Rate Scheduling

Similar to [44], we employ a learning rate sched-
ule that linearly increases the learning rate for the first
warmup_steps training steps. After the warm-up phase,
we decrease the learning rate proportionally to the inverse
square root of the current step (it). We set warmup_steps
to 10,000 in our use case. In the following, we call this
schedule-default:

n:d—OS

0.2 - min(it™% it - warmup_steps ' °).  (2)
For our models, it stands out that the validation score in-
creases during the warm-up phase and continues to increase
for two to three epochs during the slow decay of schedule-
default. However, after that, the validation scores decrease
continuously, i.e., our model starts to overfit after a short
while. Since the validation scores are strongly dependent
on the learning rate according to our observations, we want
to prevent early overfitting by using a different learning rate
schedule.

The SGDR (Stochastic Gradient Descent with Warm
Restarts) [31] learning rate schedule is a promising ap-
proach, as it is applied successfully in other related
works [11,16,29] and helps to improve scores while speed-
ing up convergence. Initially, we found this technique to
harm our final scores, i.e., the Transformer network did not
seem to initialize correctly. However, when combining this
approach with a warm-up phase, we did notice some im-
provements over schedule-default. Particularly, we find that
the learning-rate restarts harm the performance, but the fast
cosine decay helps our model to converge faster and with
better scores (see Section 5.2). We depict schedule-sgdr
alongside schedule-default in Figure 3. After the warm-up
phase, we decay the learning rate for 7 = 5 epochs. Other
parameters according to [31] are T},,;¢ = 1.0



3.5. Naive fusion of audio and video features

When generating descriptions from visual data of video
clips, we can inherently only describe what we “see”. How-
ever, some of the content reflected in the associated captions
can only be derived when we also inject information about
what we “hear”. Since the videos of the VATEX dataset are
videos from YouTube, we are able to extract raw audio from
these video clips.

To turn these raw audio streams into usable information,

we extract audio features with the VGGish [20] architec-
ture that yields features of dimension R"™=*128  We for-
ward these features through a dense audio embedding layer
to match dpogel = 512.
Note, that the number of audio frames n, does not match
the number of image frames or I3D frames, respectively.
Therefore, we cannot sum image and audio features and use
these as new encoder input features. Because the sequence
lengths of image features or I3D features are varying, we
cannot simply concatenate vision and audio features as the
added positional encoding may signal the encoder that it re-
ceives a vision feature as input when in reality it is an audio
feature.

As we still want to allow vision features to attend to au-
dio features and vice versa, we assume a fixed starting po-
sition for all audio features, which we set greater than the
maximum number of vision input features N, within the
dataset. More specifically, we concatenate n, vision and
ng, audio features along the time dimension while adding
the position embeddings for indices [0,...,n, — 1, N, +
0,...,N, + n, — 1] onto them.

3.6. Fractional Positional Encoding

We present a novel way of aligning vision and audio fea-
tures within a Transformer model. Our I3D frames and au-
dio frames are not synchronized: for vision features we ex-
tract single frames without resampling the video and audio
is resampled to 16 kHz. Thus, an I3D frame at a given po-
sition represents a different timestamp for videos with dif-
ferent framerates. If we resampled all videos to the same
framerate, we would still have no way of synchronizing the
vision frames with the audio frames, as those sampling rates
differ. In other words, the audio frame at a given position
would not match the timestamp of the I3D frame at the same
position.

In the original work [44], the Positional Encoding has
no inherent meaning other than to define the relative po-
sition of a word. For our input data however, vision and
audio feature frames are aligned on the same time-axis and
depend on their respective frame rate. Thus, we fix this
problem by introducing the Fractional Positional Encoding
(FPE) (see Figure 2). FPE is an extension to the traditional
Positional Encoding that allows positional encoding on a
fractional level. In order to fully utilize the audio features,
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Figure 2. The default Positional Encoding for audio and video
frames (on top) in comparison with the FPE (bottom) for an exem-
plary video. The video has 32 I3D frames and 11 audio frames.
The lengths (d) of audio and video frames differ.

the Transformer needs to know which audio frame corre-
sponds to which vision frame. To do so, we calculate two
timestamp factors for every video within the dataset, i.e., an
audio and a vision timestamp factor. Both timestamp factors
indicate the number of seconds each frame lasts. We then
multiply the integer indices of each frame with the corre-
sponding timestamp factor. Thus, we ensure that audio and
video frames are properly aligned relative to their times-
tamp.

3.7. Self-Critical Sequence Training

In our baseline model, we optimize the objective of max-
imizing the likelihood of the next ground-truth word given
previous ground-truth words and the encoder outputs. This
approach is called “Teacher-Forcing” [4] and has a serious
drawback, i.e., the training phase is different from the in-
ference phase (exposure bias [40]). That is, during infer-
ence, we can only greedily sample the next word given pre-
viously sampled words. On ther hand, we maximize the
probability of the next word given ground-truth words dur-
ing training. In addition, our models are trained with cross-
entropy loss and evaluated with non-differentiable metrics
(e.g., CIDEr [45] and BLEU [36]). In the work Self-critical
Sequence Training (SCST) for Image Captioning, Rennie et
al. [41] present a sequence model that is trained to mitigate
these problems.

SCST is a variation of the popular REINFORCE algo-
rithm that utilizes the outputs of the model’s test-time infer-
ence algorithm instead of estimating a baseline to directly
optimize for the metric. The main idea of SCST is to base-
line the reward with the reward of the current model in the
test-time inference mode. Thus, we first greedily sample
a caption for each video clip with our model in inference
mode. Second, we sample ny, = 5 sentences w® for the
corresponding video clip in training mode using categori-
cal sampling. Then, we calculate the CIDEr scores for the
baseline caption w and the sampled captions w?*, respec-
tively. Subsequently, we can baseline the reward of the sam-
pled captions by subtracting the CIDEr score for the base-
line caption. Thus, sampled captions with a higher CIDEr



Dataset # Videos (clips) # Sentences # Videos avail.  # Sentences usable
VATEX [50] 41,269 349,910 38,109 323,950
MSR-VTT [52] 10,000 200,000 7,773 155,460

MSVD [6] 2,089 85,550 1,970 80,838

Table 1. Different datasets and their respective number of video
clips and number of available videos. Sentences are available for
every video, however, not every video was available to be down-
loaded from YouTube.

score than the baseline caption get a positive reward and
vice versa. By optimizing for this objective, sampled cap-
tions with a higher CIDEr score will be increased in proba-
bility, while we try to make bad captions less likely. Note,
that we assign the same reward to every word of each sam-
pled caption. The gradient of the loss function can be ap-
proximated as follows:

VoL(0) ~ —(r(w®) — r()) Vg log,, (w*). 3)

Each word will be weighted according to its log probability
and 7(-) is the reward function. 6 are the parameters of the
network and define a policy pg. For our final models, we
additionally optimize the BLEU-4 metric. Therefore, our
reward function becomes 7(-) = Acipg: - "cipE:(+) + ABLEU-4
where \. is a weight for the corresponding metric.

4. Datasets

We mainly use the VATEX Dataset [50] for our experi-
ments. The VATEX dataset is split into 4 sets, i.e., the train-
ing set, the validation set, the public test set and the private
test set. The VATEX dataset comes with 10 English and 10
Chinese captions per video clip. Most video clips have a
length of 10s. Additionally, we train our final models on
the MSR-VTT [52] and MSVD [6] datasets. For MSVD,
we follow the common practice and split the 1970 available
video clips into three partitions of 1200, 100 and 670 for
training, validation and test, respectively. For MSR-VTT,
we use splits containing 90 %, 5 % and 5 %. We depict de-
tails about the datasets in Table 1.

4.1. Preprocessing of Videos

Single Images. In order to process the videos in our
model, we extract every frame of each video. We do not
resample the videos to a fixed frame rate. We use ResNet-
101 V2 [18] to compute features for the extracted frames by
resizing the input images to 224 x 224 and using the average
pooled features with dimension R™ %2948 ' where n,, is the
number of frames of the corresponding video clip.

I3D Features. We extract I3D features similar to frame-
level features. Instead of forwarding frame images through
the ResNet-101 V2 network, we extract video clip features
with the RGB-I3D pretrained on the Kinetics Human Ac-
tion Video dataset [24]. The I3D yields features of dimen-

sion R™ *1024 \whereas in this case n,, is the number of I3D
frames, which is less than the original number of frames
in the video due to the 3D-convolutions. Furthermore, we
average-pool over the spatial dimensions and repurpose the
same image embedding layer to embed the 13D features into
the model dimension (R™*512).

Audio features. We take the audio of the video, resample
it to 16 kHz and extract features with the VGGish [20] net-
work. This network yields features of dimension R™a* 128,
Here, n, is the number of audio features, which is differ-
ent from n,. If no audio stream for a video is existent, we

create a dummy feature vector with all zeros and dimension
R1x128

4.2. Preprocessing of Tokens

For our models with the default vocabulary, we employ a

simple text tokenizer that filters out special characters'. We
limit the vocabulary to 12000 tokens and replace less occur-
ring words with the <unk> token.
We tokenize ground-truth words with the WordPiece to-
kenizer with the English BERT vocabulary for our other
models. Additionally, for a subset of our models, we
load pretrained embedding Weights2 from the BERT sparL
model, which has d;o4e1 = 512 to match our architecture.

5. Experiments

In our experimental part of this work, we evaluate the
suggested extensions. We also present an extensive ablative
study of our simple extensions from Section 3 and show
their effectiveness. At the end of the Section, we show that
FPE improves scores substantially.

5.1. Implementation details

Our model is implmented with TensorFlow 2 and we
publish our code on GitHub?.
As a baseline model, we implement a vanilla Trans-
former [44] model with dmoder = 512,d¢s = 2048. Our
encoder and decoder each have N = 8 layers with b = 8
parallel attention heads. We also adopt the same learn-
ing rate schedule from [44], however, we change the num-
ber of warm-up steps to 10,000. As optimizer, we use
Adam [25] with the learning rate schedules from Section 3.4
and 5, = 0.9, 82 = 0.999 and € = 1 - 10~8. We train for a
maximum number of 50 epochs with a batch size of 128 and
employ early stopping based on the validation CIDEr score.
Because of the huge memory demand of the SCST training,
we lower the effective batch size to 16 (i.e. 4 GPUs with
batch size 4) during fine-tuning stage and use a constant
learning rate of = 5 - 1075,

HS% & () +.,-1=2@\]"_*{|}
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Model Features |mv| Vocabulary ft We FPE IrSchedule | B@1 B@2 B@3 B@4 M R C

baseline R101 0 Default v Default 6549 4742 3406 2347 18.72 43.60 33.72
memvec R101 64 Default v Default 66.56 48.40 35.08 2457 18.83 4392 3523
i3d-baseline 13D 0 Default v Default 69.64 5249 3894 2792 20.85 4633 49.13
i3d-memvec 13D 64 Default v Default 71.82 5451 40.63 2921 21.77 4733 53.01
i3d-wp 13D 64 WP v Default 7136 5424 4050 29.04 21.49 47.08 50.19
i3d-wp-audio I3D+VGGish 64 N v Default 7220 55.64 41.68 2999 2211 48.10 52.64
i3d-audio I3D+VGGish 64 Default v Default 73.09 5626 42.08 3040 22.04 48.08 51.72
i3d-bert 13D 64 WP-BERT — Default 71.12 5383 39.79 2826 21.76 47.14 5138
i3d-bert-audio I3D+VGGish 64 WP-BERT — Default 71.39 55.03 4156 3035 22.06 4790 53.16
i3d-bert-ft-audio I3D+VGGish 64 WP-BERT v Default 72.64 5597 42.04 3032 2195 48.09 52.09
i3d-bert-audio-sgdr I3D+VGGish 64 WP-BERT — sgdr 7353 57.55 4381 32.16 2270 49.07 56.92
i3d-bert-audio-sgdr-FPE  I13D+VGGish 64 WP-BERT — sgdr 75.35 5858 4430 3243 2381 49.60 61.80
SCST-Cider I3D+VGGish 64 WP-BERT — 5-107¢ 7352 59.20 41.11 28.73 23.08 4820 68.87
SCST-Cider-B4 I3D+VGGish 64 WP-BERT — 5-107¢ 7821 61.03 4626 3392 23.65 4991 68.62
SCST-Cider-B4-FPE I3D+VGGish 64 WP-BERT — 5-107¢ 78.74 62.82 48.64 3630 2452 5191 70.85

Table 2. Ablation study for our VIT Transformer models on the VATEX validation set. On the left, we list the model names with their
respective configurations (ft We=fine-tune word embedding). On the right we list the validation scores (B@x=BLEU-x, M = METEOR, R

= Rouge-L, C = CIDEr).
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Figure 3. Course of learning rate plotted against the CIDEr vali-
dation score of model i3d-bert-audio-sgdr. We plotted schedule-
default against schedule-sgdr for comparison.

5.2. Discussion of Results

In the following, we discuss the results of the extensions
presented in Section 3. In Table 2, we depict results on
the validation set of the VATEX dataset. In Figure 4, we
show generated captions for three example videos and every
model from the VATEX validation set. Both when looking
at the scores and the generated descriptions, we see that our
baseline model scores worst across all metrics. The baseline
model uses frame-level ResNet-101 features with an image
embedding for the encoder.

Memory-Augmented Encoder. Adding a memory vector
to the key and value of the multi-head self-attention allows
the encoder network to learn a-priori knowledge about re-
lationships on an intra frame level. For example, when we
look at sentences generated for the bottom video clip in Fig-
ure 4, we see an ice hockey player doing some shots on a
goal. Comparing the captions generated by the *memvec
models to the captions of the baseline models, we see the
models have memorized that ice hockey often is played
within an ice rink. In addition, for the model memvec, we

see a slight boost in all scores except Rouge-L, e.g., the
CIDEr score is improved by about 1.5 points.

Image Features and I3D Features. One of the two exten-
sions gaining the most in terms of CIDEr score is replacing
frame-level image features with features from the RGB-13D
network. Looking at the model i3d-baseline that uses no
memory-augmented encoder, we see an increase of 15.41
points and 5.39 points in CIDEr and BLEU-4, respectively.
The memory-augmented encoder benefits from the I3D fea-
tures in the same way, i.e., i3d-memvec gains 16.63 points
and 5.12 points in CIDEr and BLEU-4, respectively.

Naive fusion of audio and video features. Most videos
not only contain visual data but also audio data. Thus, it is
obvious that some contents of a textual description of said
video clip can only be described accurately when also using
the audio data. As already described in Section 3.5, we first
concatenate vision and audio features and naively add tra-
ditional positional encodings onto them. When comparing
the model i3d-audio with i3d-memvec we can observe no
gains in performance, i.e., the CIDEr score is slightly worse
with -0.14 points while BLEU-4 improves the score by 0.71,
However, we will see in the next paragraph that combining
audio features with the BERT dictionary will yield improve-
ments.

Dictionaries and Tokenization. We already stated that by
using WordPiece tokenization, we are able to generate rare
words that do not occur in a vocabulary with fixed size.
However, this does not necessarily reflect on the scores as
model i3d-wp shows. In comparison to i3d-memvec we
loose 1.6 points and 0.66 points in CIDEr and BLEU-4, re-
spectively. Similarly, when initializing the word embedding
with BERT embeddings (i3d-bert), we loose 0.48 points and
0.72 points for CIDEr and BLEU-4, respectively. How-
ever, in combination with the concatenated audio features



Frame #1/300

Frame #200/300

baseline: a man is standing in a restaurant and talking about it

memvec: a man is sitting at a table playing a drum set

i3d-baseline: a woman is standing in front of a faucet and she is holding a bottle
i3d-memvec: a young boy is playing with a machine and a woman is talking
i3d-wp: a young man is standing at a ball game and talking to the camera .
i3d-wp-audio: a woman is standing in front of a store and she is talking to a man .
i3d-audio: a young boy is standing at a counter and he is standing in a chair
i3d-bert: a man is standing in front of a car and he is pumping gas in the air .
i3d-bert-audio: a young girl is at a bar and she is playing the game
i3d-bert-audio-sgdr: a young girl is trying to get her balance on the machine .

Frame #300/300

i3d-bert-audio-sgdr-FPE: a young girl is playing a toy game while a man watches her .

SCST-Cider-B4: a man and a young man is playing with a football player .
SCST-Cider-B4-FPE: a young girl is using a machine to peel a game of meat .

Frame #1/300 Frame #101/300

Frame #200/300

baseline: a man is flipping a pancake in a pan and catches it

memvec: a woman is sitting at a desk and talking about it

i3d-baseline: a man flips a pancake in the air and catches it

i3d-memvec: a woman is flipping a pancake in a pan and then she flips it
i3d-wp: a man is flipping a pancake in a frying pan .

i3d-wp-audio: a man is flipping a pancake in the air and catches it .
i3d-audio: a young girl is flipping a pancake and flipping it

i3d-bert: a man flips a pancake in a kitchen and flips it .

i3d-bert-audio: a man is flipping a pancake in a pan .
i3d-bert-audio-sgdr: a man is flipping a pancake in a pan .
i3d-bert-audio-sgdr-FPE: a man is flipping a pancake in a pan and then catches it .
SCST-Cider-B4: a man and a man flips a pancake and then in a frying pan .
SCST-Cider-B4-FPE: a young man is flipping a pancake in a frying pan .

Frame #300/300

Frame #1/300

baseline: a group of people are playing a game of curling

memvec: a man is playing a game of curling in a rink

i3d-baseline: a hockey player is skating backwards and then turns to a stop
i3d-memvec: a group of people are practicing skating on an ice rink
i3d-wp: a person is skating on an ice rink and practicing ice skating .
i3d-wp-audio: a group of people are playing hockey in an arena .
i3d-audio: a hockey game is being played on an ice rink

i3d-bert: a group of people are skating around in a hockey rink .
i3d-bert-audio: a group of people are playing hockey in a gym .
i3d-bert-audio-sgdr: a group of people are playing hockey in a rink .

Frame #300/300

SCST-Cider-B4: a man and a person is playing a hockey goal on an ice rink .
SCST-Cider-B4-FPE: a group of people are playing a game of hockey on a rink .

Figure 4. Examples of generated descriptions for three example videos from the validation split. We see four frames from each video
together with the frame number on the left and the generated caption for each model on the right.

WordPiece tokenization gives us better results. For Word-
Piece tokenization with no initialization of the word em-
bedding, we gain 0.77 points (CIDEr) and 1.16 points (B-
4). When initializing the word embeddings (i3d-bert-audio)
we get slightly higher scores. When comparing i3d-bert-
audio with i3d-bert, we also see the benefit of audio fea-
tures, which could not be seen beforehand. Note, that we
keep the BERT embeddings frozen during training, because
fine-tuning them hurts performance (see model i3d-bert-ft-
audio).

Learning Rate Scheduling. Replacing the default Trans-
former learning rate schedule with our modified version of
SGDR i3d-bert-audio-sgdr improves the performance by
3.76 points and 1.81 points in CIDEr and BLEU-4, respec-
tively. As we have already discussed in Section 3.4, the fast
decay of the SGDR schedule helps to boost our validation
scores as we depict in Figure 3. After the warm-up phase of
10,000 steps, the validation accuracy makes another climb
until it hits its maximum CIDEr score of 56.92 at the end of
the first decay. However, we see that restarting the learning
rate leads to a drop in performance. Our model can recover
somewhat but never reaches the maximum score again and
its performance declines slowly.

FPE. In contrast to the naive fusion of audio and video fea-
tures, FPE (i3d-bert-audio-sgdr-FPE) boosts performance
across all metrics significantly. Most notably, synchroniz-

ing audio and video features by their relative position has
the hugest benefit on the CIDEr metric, where we gain 4.88
points. Even during self-critical fine tuning (see next para-
graph), FPE (SCST-Cider-B4-FPE) achieves improvements
across all metrics. Thus, we conclude that FPE is an easy
and effective way to synchronize audio and video features
in Transformers.

SCST. We initialize the self-critical sequence training with
the best models i3d-bert-audio-sgdr and i3d-bert-audio-
sgdr-FPE. As reward function, we calculate the CIDEr
score of the baseline caption and the sampled sentences.
We see that directly optimizing the CIDEr metrics leads
to big gains in the CIDEr metric, i.e., 68.87 points vs.
56.92 points. The difference of 11.95 points is the second
biggest improvement besides replacing image features with
13D features. However, as we only optimize for the CIDEr
metric in model SCST-Cider, we loose 3.43 points on the
BLEU-4 metric. We also loose some performance across all
other metrics except Meteor. However, when directly opti-
mizing for CIDEr and BLEU-4 (see model SCST-Cider-B4;
we set Aciper = ABLEu4 = 1.0), we see that the CIDEr
score is nearly identical while all BLEU-n scores get a sig-
nificant boost. When combining SCST with FPE, our model
produces the best results across all experiments and we im-
prove by another 2.23 and 2.38 in CIDEr and BLEU-4, re-

i3d-bert-audio-sgdr-FPE: a group of people are playing a game of soccer in a indoor rink .



Features MSVD MSR-VTT VATEX
Model Year I M O A ‘ B@4 M R C ‘ B@4 M R C ‘ B@4 M R C
M3 CVPR 2018 [49] v v — | 528 333 — — 38.1 266 — — — — — —
RecNet ICCV 2018 [48] v. — — — | 523 341 698 803 | 39.1 266 593 427 — — — —
PickNet ECCV 2018 [¢] v — — | 523 333 696 765 | 413 277 598 441 — — — —
MARN CVPR 2019 [37] v — — | 486 351 719 922 | 404 281 60.7 47.1 — — — —
SibNet ACM'MM 2019 [28] | v @ — — — | 542 348 717 882 | 409 275 602 475 — — — —
OA-BTG CVPR 2019 [55] v — v — | 569 362 — 90.6 | 414 282 — 46.9 — — — —
GRU-EVE CVPR 2019 [1] v vy — 479 35 715 78.1 383 284 607 48.1 — — — —
MGSA AAAI 2019 [7] v v — v | 534 35 — 86.7 | 424 276 — 47.5 — — — —
POS+CG CVPR 2019 [47] v v — — | 525 341 713 887 42 282 61.6 487 — — — —
POS+VCT ICCV 2019 [21] v v — —| 528 361 718 878 | 423 297 628 49.1 — — — —
ORG-TRL CVPR 2020 [57] v v — | 543 364 739 952 | 436 288 621 509 | 321 222 489 497
LSTM-TSAy CVPR 2017 [34] 528 335 — — — — — — — — — —
aLSTMs IEEE ToM 2017 [15] | v v — — | 50.8 333 — — 38 26.1 432 — — — —
RCG CVPR 2021 [56] v v = = — — — — 428 293 617 529 | 339 237 502 575
NSA CVPR 2020 [17] — v v — | — — — — — — — — 314 227 49 57.1
SemSynAN CVPR 2021 [38] v Vv o — — | 644 419 795 1115 464 304 647 519 — — — —
VATEX CVPR 2019 [50] — vV - —| — — — — — — — — 287 219 472 456
SCST-Cider-B4-FPE* Ours — v — Vv | 5122 3473 7269 1032|4591 30.25 64.12 62.11 | 33.28 22.74 49.56 54.63
Non per-reviewed papers:
MV+HR arXiv 2019 [58] v v v - — — — — — — — — 40.7 258 537 814
MM-Feat arXiv 2020 [27] v v v v — — — — — — — — 392 265 527 76
NITS-VC arXiv 2020 [42] — v - — ] — — — — — — — — 22 18 43 27

Table 3. Comparison on VATEX, MSVD and MSR-VTT datasets against state-of-the-art methods. For VATEX, we tested our model on the
private test set with the evaluation server. For MSVD and MSR-VTT, we use the test-splits discussed in Section 4. I, M, O and A denote

image, motion, object and audio features.

spectively.
5.3. Comparison with State-of-the-Art

We were not able to download all video files for the VA-
TEX dataset from YouTube (see Table 1), thus we could
not train, validate and test on the whole dataset. For the
private test split of the VATEX dataset, we could download
5,714/6,278 videos, thus, missing features for 564 videos.
However, the authors provide pre-extracted 13D features.
After closer inspection, these features do not match our I3D
features. Additionally, we do not have audio features for
those missing videos. Submitting generated descriptions
to the evaluation server requires descriptions for every sin-
gle of the 6,278 videos, thus, we use the VATEX authors’
I3D features with no audio features for submitting results.
In Table 3, we depict results of our model SCST-Cider-B4-
FPE trained in the same manner on both train and validation
splits. Our model scores not as well as the models from the
VATEX video captioning challenge Zhu et al. [58] and Lin
etal. [27], who use ensembles of up to 32 models. However,
across all published works on video captioning, we achieve
similar performance on the reported metrics. We also train
our model on the MSVD and MSR-VTT datasets to prove
the effectiveness of our method. On the MSVD dataset, our
scores are below SemSynAN [38] but otherwise better than
all other methods listed in Table 3. For MSR-VTT, however,

4We were only able to extract I3D and audio features for 5714/6278
video clips as the videos were no longer available on YouTube. We could
use 13D features made available by the dataset’s authors. These features,
however, were different from our 13D features.

our final model outperforms SemSynAN by 10.21 points in
CIDEr and performing similar to it for the other metrics.

6. Future Work and Conclusion

In our work, we presented a Transformer-based Video-
to-Text architecture aimed to generate descriptions for short
videos. Utilizing promising approaches from the related
field of Image Captioning, we were able to gradually im-
prove a vanilla Transformer designed for Machine Trans-
lation into a architecture that generates appropriate and
matching captions for video clips. By combining motion
features, audio features, a custom learning rate schedule
and a pretrained vocabulary we establish a solid captioning
model. Furthermore, we introduce the novel Fractional Po-
sitional Encoding to properly synchronize video and audio
features with different sampling rates, which significantly
improves results across all metrics. In combination with
self-critical sequence training, we were able to considerably
boost the performance of a baseline model by an absolute of
37.13 points or 210% in the CIDEr metric.

In the future, we want to expand our model with the X-
Linear Attention block [35], which shows huge potential
in other works [58]. We also want to improve our archi-
tecture further by employing unsupervised pretraining with
the VideoBERT [43] model. Furthermore, we will extend
the model by a multi-modal training objective that takes
Chinese captions from the VATEX dataset into account in
order to improve training feedback.
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