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StarVQA: Space-Time Attention for
Video Quality Assessment

Fengchuang Xing, Yuan-Gen Wang, Hanpin Wang, Leida Li, and Guopu Zhu

Abstract—The attention mechanism is blooming in computer
vision nowadays. However, its application to video quality assess-
ment (VQA) has not been reported. Evaluating the quality of in-
the-wild videos is challenging due to the unknown of pristine ref-
erence and shooting distortion. This paper presents a novel space-
time attention network for the VQA problem, named StarVQA.
StarVQA builds a Transformer by alternately concatenating the
divided space-time attention. To adapt the Transformer architec-
ture for training, StarVQA designs a vectorized regression loss by
encoding the mean opinion score (MOS) to the probability vector
and embedding a special vectorized label token as the learnable
variable. To capture the long-range spatiotemporal dependencies
of a video sequence, StarVQA encodes the space-time position
information of each patch to the input of the Transformer.
Various experiments are conducted on the de-facto in-the-wild
video datasets, including LIVE-VQC, KoNViD-1k, LSVQ, and
LSVQ-1080p. Experimental results demonstrate the superiority
of the proposed StarVQA over the state-of-the-art. Code and
model will be available at: https://github.com/DVL/StarVQA.

Index Terms—video quality assessment, in-the-wild videos,
synthetic distortion, attention, Transformer

I. INTRODUCTION

OR the last few years, user-generated content (UGC) has
shown an explosive growth on major social platforms,
such as TikTok, Facebook, Instagram, YouTube, and Twitter
[20], [6]. This causes a serious problem in content storage,
streaming, and usage. Primarily, a deluge of low-quality
videos captured by some amateur videographers in severe
environments floods into the Internet. It is an urgent task for
video quality assessment (VQA) tools to screen these videos
according to their quality. However, evaluating the perceptual
quality of in-the-wild videos is extremely hard because neither
pristine reference nor shooting distortion is available [18].
Convolutional neural networks (CNNs) have delivered re-
markable performance on a wide range of computer vision
tasks. For example, some deep CNN-based VQA models were
proposed [12], [33], 311, [14], (150, (70, (301, [26], [29],
yielding promising results on the synthetically distorted video
datasets. In [12], DeepVQA employed the deep CNN and
aggregation network to learn spatiotemporal visual sensitivity
maps. In [33], Zhang et al. exploited transfer learning to
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develop a general-purpose VQA framework. You and Ko-
rhonen [31] used 3D convolution network to extract local
spatiotemporal features from small clips in the video. VSFA
[14], [15] utilized the pre-trained ResNet-50 to extract spatial
features of each frame. RIRNet [7] designed a motion percep-
tion network to fuse the motion information from different
temporal frequencies. PVQ [30] extracted the 2D and 3D
features to train a time series regressor and predict both the
global and local space-time quality. Tu et al. [26] proposed to
combine the spatiotemporal scene statistics and high-level se-
mantic information for video quality prediction. Such semantic
information was also oriented to design the VQA method in
[29]. Unfortunately, the above methods still struggle on the
performance improvement on the in-the-wild videos [30], [24],
[L1] since both the reference videos and distortion types are
not available, and the receptive field of convolutional kernels
is limited [1]].

The success of attention mechanism in natural language
processing (NLP) has recently inspired approaches in com-
puter vision by integrating Transformers into CNN [16] [28]
or taking the place of CNN completely [23] [21]. For exam-
ple, Vision Transformer (ViT) [8] (a pure Transformer-based
architecture) has outperformed its convolutional counterparts
in image classification tasks. Transformer does not use any
convolutions but is based on multi-headed self-attention [27]].
This mechanism is particularly effective in modeling the long-
term dependency of sequential language. Videos and sentences
are both sequential. Thus, one expects that such self-attention
will be effective for video modeling as well [3]]. Inspired
by ViT, several Transformer-based models [[1I], [3l], [9], [22],
[L7], [S] were developed for video classification tasks. These
models lead to higher classification accuracy compared with
3D convolutional networks. Unlike the classification tasks that
aim at distinguishing among multiple different discrete values,
the regression tasks need to output a continuous real value as
close to the ground truth as possible. Researches showed that
transferring existing classification networks to regression tasks
performed not well [8], [3], [32]. As noted by A. C. Bovik [4],
“Unlike human participation in crowdsourced picture labeling
experiments like ImageNet, where each human label might
need only 0.5-1.0 seconds to apply, human quality judgments
on pictures generally required 10-20x that amount to time
for a subject to feel comfortable in making their assessments
on a Likert scale [10].” In general, a clip of video has a
long duration including hundreds of images, and its perceptual
quality difference from other videos with different content is
extremely subtle. Can the Transformer be applied to VQA? If
yes, how to implement it effectively? These questions become
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Fig. 1: Description of StarVQA network. It includes pre-processing, encoding block, and vectorized regression loss modules.

the original motivation of this work.

In this paper, we design a space-time attention network
for VQA, named StarVQA. It is a pure Transformer-based
model without using any convolution operations. As a result,
StarVQA can capture the long-range spatiotemporal dependen-
cies of a video sequence and guarantee a very fast convergence
speed. The major contributions of this work are three-fold: 1)
A novel Transformer network is built. To our best knowledge,
this is the first work to apply Transformer to the VQA
problem. 2) A vectorized regression loss function is designed,
which can facilitate the training of StarVQA. 3) Experiments
are performed on four benchmark in-the-wild video datasets
and show that StarVQA achieves competitive performance
compared with five state-of-the-art methods.

II. PROPOSED STARVQA

In this paper, matrices, vectors, and scalar variables are in
bold uppercase, bold lowercase, and italic lowercase, respec-
tively. [N], |-], and (-)T denote the integer set {1,..., N},
the floor operation, and the transpose operation, respectively.
The overall framework of the proposed StarVQA is shown in
Fig. [1] which consists of pre-processing, L encoding blocks
(the divided space-time attention concatenated with a residual
connection block), and vectorized regression loss modules. In
the following, we describe each of them in detail.

Pre-processing Module. To match the input of the
StarVQA network, we need to pre-process the video se-
quences. First, we select F' frames from each video sequence
according to equal-interval sampling, and then crop the se-
lected frame to H x W x 3 size in a random way, where H
and W denote the height and weight of the cropped frame
respectively, and the number 3 means the three color channels
of R, G, and B. Next, the cropped video frame is divided
into many non-overlapping patches with P x P size. Thus,
there are S = |H/P| x |W/P] patches in total for each
cropped frame. Then each patch is flattened into a column
vector with P x P x 3 dimensions. Denote the column vector
X(p,t) € RPXF>3 ag the p-th patch of the ¢-th selected frame,
where p € [S] and ¢ € [F].

Since the self-attention mechanism can capture the long-
range dependences of spatiotemporal information [3], we use a

spatiotemporal position vector (denoted as p(,,) € RP where
D = 768 is set to the dimensions of a patch) to encode each
patch x(, ;) into an initial embedding vector egg)t) by

(0)

ety = MXpt) + Py, (1)

where M € RP*3P” denotes a learnable matrix. Next, we add
in the first position of the sequence of embedding vectors egg) £

(0)
0,0 <

RP representing the embedding of the vectored label token.
Finally, we obtain the input of the first encoding block of the
StarVQA network (denoted as E(©)) as follows:

for p € [S] and t € [F] a special learnable vector e

EO — [ R N s )

Time-attention Module. With the input E©, we can
calculate the query (q), key (k), value (v) vectors of the first
encoding block. For each patch, the values of q, k, and v
of the current block [ can be successively calculated from the
output of the previous block (! —1). For convenience, hereafter
p and t can take O value due to an addition of a label token.
The calculation process is expressed as

L, L, -1
(i) = W VLN(eg, ). G
L, L, -1
ki) = Wic"LN(eg, ). @
l,a l,a -1
b = WEILNGe(, ), (5)

where LN(-) denotes LayerNorm [2], Wg’a) € RPwxD,

W%’a) € RPrxD and Wg’a) € RP»XD denote the learnable
query, key, and value matrices on the I/-th encoding block
respectively, and a € [A] denotes an index over multi-
headed attentions and A denotes the total number of attention
heads. The latent dimension for each attention head is set to
D, =D/A.

Next, we compute the weight of self-attention. As done
in [3], we use an alternative, more efficient architecture
for spatiotemporal attention, where time-attention and space-
attention are separately applied one after the other. First, time-



attention is computed by comparing each patch with all the
patches at the same spatial location. Thus, we have

<qu,a>)T
(I,a)(time) __ (pt) (1,a) { (I,a) }

Uy = SM| T [kw 0 Ko e | |
(6)

where SM(-) denotes the softmax activation function. It can be

seen from Eq. (6) that the time-attention coefficient is extracted

when p is fixed to a constant. Then, the encoding coefficients

can be calculated by using the self-attention weight, which is

expressed by

(, a)(tlme) (l a) (l a) (1,a) (l a)
S(p.1) %(0.0)0) Y (0.0) Z i)V D
t'=1
The concatenation of these encoding coefficient vectors from
all heads is projected by
(1,1)(time)
(p,t) (-1
-1
: +eu (8)
(1,.A)(time)
1)

where ngme) is a learnable mapping matrix with D x D size.

Space-attention Module. To compute the q, k, and v
values of spatial self-attention, we only need to take eéi} t;)
as the input of LN(-) function of Egs. (3)-(5). Similar to the
temporal self-attention mechanism, the weight of spatial self-

attention is computed by

T
(o)
(l,a)(space) D5t (1,a) (L,a)
Ay = SM e [km 0)’ {k@',t)}p,e[s]] )
©))
Therefore, we obtain the encoding weight of spatial self-
attention as follows

atbe)
®0,00)Y

(1,a)(space) _
(p,t)
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0.0 F Z X)) V(' 1)°
Like Eq. (8), the output of space-attention can be written by

(1,1)(space)
(p;t)

(10)
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) (space)
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&), = (11)
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Finally, this output is passed through a multilayer perceptron

(MLP), using residual connections after each operation:

s, =MLP (LN (&),)) + (. ).
By now, we obtain the output of the encoding block /. And
this output will be taken as the input of the encoding block
(l+1)until =1

Vectorized Regression Loss Module. Our attempt to con-
struct the end-to-end Transformer-based networks and use
existing loss functions (such as L-norm, hinge, and cross-
entropy losses) to train such networks [8]], [3] perform poorly
in regression tasks. To adapt the Transformer architecture, we

12)

propose to embed a unique vectorized label token to the input
of encoding blocks as the learnable variable. Accordingly, the
mean opinion score (MOS) is encoded in a vector form. Based
on this observation, we design a vectorized regression (VR)
loss function for the training of StarVQA.

After obtaining the output of overall encoding blocks, the
embedded label token can be taken out to compute the loss. In
this module, we employ MLP and SM to generate a probability
vector, which is expressed as

y =M (MLp (s(f)))).
Inspired by [32]], we encode the MOS of a video sequence
to the probability vector. For this purpose, we first scale the
MOS to the interval of [0.0, 5.0]. Then the scaled MOS is
encoded to a probability vector q = [qo, - . -, g5] by

e(~IMOS—b,,)|?)

13)

In = =5 (14)

Zn:O e
where b = [0,1,2,3,4,5] denotes an anchor vector. In Eq.
(14), g, represents the probability of the n-th anchor b,
corresponding to the MOS. Finally, our VR loss is written as

(q-y)
lall - [ly]l’

where () and || - || denote the inner product operation and
Ly-norm, respectively. With this loss function, we can train
the StarVQA network until convergence. In the last, a linear
SVR model can be used to decode the output vector y and
predict the scores of video sequences.

(—=IMOS—b,,y|2)’

Lyr =1— (15)

III. EXPERIMENTAL RESULTS

Experimental Setup. Our network is built on the Pytorch
framework and trained on a machine equipped with four
Tesla P100 GPUs. Four in-the-wild VQA datasets are used
for the verification, including KoNViD-1k [11], LIVE-VQC
[24], LSVQ [30], and LSVQ-1080p [30]. By convention, 80%
of the dataset is for training, and the remaining 20% is for
the test. The performance results are averaged on 10 random
rounds. Besides, the related parameters are set to F' = 8§,
H=W=224, P=16, A= 12, and L = 12.

Datasets Description. LIVE-VQC contains 585 videos
labeled by MOS of [0.0, 100.0] with resolution from 240p to
1080p. KoNViD-1k contains 1,200 videos labeled by MOS of
[0.0, 5.0] with fixed resolution 960p. LSVQ (excluding LSVQ-
1080p) contains 38,811 videos labeled by MOS of [0.0, 100.0]
with diverse resolutions. LSVQ-1080p consists of 3,573 videos
(more than 93% with resolution 1080p or higher), which are
all extracted from the original LSVQ. Note that LSVQ-1080p
does not contain any overlapping samples with LSVQ and is
specifically designed for the performance verification on high-
resolution videos.

Convergence Speed. According to our experiment on the
KoNViD-1k dataset, StarVQA achieves 0.72 on both SROCC
and PLCC performances when the number of epochs is only
five. After the number of epochs exceeds ten, the performance
of StarVQA remains almost unchanged. This shows that
StarVQA can be well trained at breakneck speed.



80
o7 o
8 8
& 60 )
el e}
2 2
o
5 50 2
o °
o o
40
30

90
80
© 70
3
n 60
kst
B 50
0 40
o
30

20 40 60 80 100
MOS
(a) LIVE-VQC

09
[ srocc

o8k [ e

07F
06
05f
04f
03f
02F

01

0
BRISQUE [29] VIDEVAL [31] TLVQM [30]

VSFA [7]
Fig. 3: Performance verification on high-resolution videos.
Here, all the compared methods are pre-trained on LSVQ and
tested on LSVQ-1080p.

PVQ[10]  StarVQA

Overall Performance on Individual Dataset. The scatter
plot of predicted quality scores on different datasets is shown
in Fig. 2] We can see that the outputs of StarVQA are all
close to the ground truths. This visually demonstrates that the
performance of StarVQA remains stable on video sequences
from different datasets. Especially, StarVQA on LSVQ gets
the most closely centered on the reference line among the
three datasets. This is because LSVQ contains a large number
of samples, which is most suitable for the Transformer-based
networks.

Performance Comparison with state-of-the-art. In this
part, we compare the proposed StarVQA with five state-
of-the-art methods, including BRISQUE [19], TLVQM [13],
VIDEVAL [23], VSFA [14], and PVQ [30]. Comparison
results are shown in Table [l and Fig. 3] It can be seen from
Table [I| that StarVQA performs the best on the KoNViD-1k
and LSVQ datasets. Nevertheless, our model does not get
state-of-the-art performance on LIVE-VQC. This implies that
the Transformer architecture may not be very suitable for
small datasets. Promisingly, for high-resolution videos, the
advantage of the Transformer architecture becomes obvious.
From Fig.[3] it is clearly shown that StarVQA surpasses all the
competitors when pre-trained on LSVQ and tested on LSVQ-
1080p.

Performance on Cross-dataset. To verify the generaliza-
tion of StarVQA, we conduct a cross-dataset experiment. The
result is shown in Table [[I} Note that the comparison result

MOS
(b) KoNViD-1k

Fig. 2: Scatter plot of predicted scores of StarVQA on different datasets. The magenta solid line represents reference line.

20

100

MOS
(c) LSVQ

for the cross-LSVQ test on LSVQ-1080p has shown in Fig. 3]
It can be seen from Table [l and Fig. [3] that StarVQA shows
good generalization.

TABLE I: Performance comparison with state-of-the-art

LIVE-VQC KoNViD-1k LSVQ

Models SROCC | PLCC | SROCC | PLCC | SROCC | PLCC
BRISQUE 0.592 0.638 0.657 0.658 0.579 0.576
TLVQM [13] 0.799 0.803 0.773 0.769 0.772 0.774
VIDEVAL[25] 0.752 0.751 0.783 0.780 0.794 0.783
VSFA [14] 0.773 0.795 0.773 0.775 0.801 0.796
PVQ 0.827 0.837 0.791 0.786 0.827 0.828
StarVQA 0.732 0.808 0.812 0.796 0.851 0.857

TABLE II: Performance on cross-dataset

Training dataset LSVQ

Testing datasets LIVE-VQC KoNViD-1k
Models SROCC | PLCC | SROCC | PLCC
BRISQUE 0.524 0.536 0.646 0.647
TLVQM [13] 0.670 0.691 0.732 0.724
VIDEVAL 0.630 0.640 0.751 0.741
VSFA 0.734 0.772 0.784 0.794
PVQ 0.770 0.807 0.791 0.795
StarVQA 0.753 0.809 0.842 0.849

IV. CONCLUSION

Based on the attention mechanism [27] and TimeSformer
[3], this paper has developed a novel space-time attention
network for video quality assessment, named StarVQA. To the
best of our knowledge, we are the first to apply Transformer to
the VQA field. Furthermore, a new vectorized regression loss
function has designed to adapt the Transformer-based archi-
tecture for training. Experimental results show that StarVQA
achieves competitive performance compared with five typical
VQA methods. This work broadens Transformer to a new
application and demonstrates that the attention has excellent
potential in the VQA field.

It is worth mentioning that the result presented in this
paper is encouraging. As the first-of-its-kind efforts in the
application of Transformer to VQA, great progress may be
made with increasing frames selected from a video sequence.
The number of frames used in the experiments only takes 8 due
to the computation and memory constraints (i.e. 4 x Tesla P100
GPUs). According to the result reported in TimeSformer [3],
the accuracy improvement on video classification tasks almost
linearly increases as the number of input frames increases.
Therefore, we would like to point out that if using clips of
32 or more frames, StarVQA will be a significant departure
from current state-of-the-art convolutional models. Besides,



we wonder how many encoding blocks used in StarVQA are in
a good balance between performance and computation. Under
the same computational cost, the convergence comparison of
StarVQA with popular CNNs is necessary to be analyzed
rigorously. These are worth our further investigation in future.
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