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TOPOLOGICALLY-CONSISTENT MAGNITUDE PRUNING FOR VERY LIGHTWEIGHT
GRAPH CONVOLUTIONAL NETWORKS

Hichem Sahbi

Sorbonne University, UPMC, CNRS, LIP6, F-75005 Paris, France

ABSTRACT

Graph convolution networks (GCNs) are currently main-
stream in learning with irregular data. These models rely
on message passing and attention mechanisms that capture
context and node-to-node relationships. With multi-head at-
tention, GCNs become highly accurate but oversized, and
their deployment on cheap devices requires their pruning.
However, pruning at high regimes usually leads to topologi-
cally inconsistent networks with weak generalization.

In this paper, we devise a novel method for lightweight GCN
design. Our proposed approach parses and selects subnet-
works with the highest magnitudes while guaranteeing their
topological consistency. The latter is obtained by selecting
only accessible and co-accessible connections which actually
contribute in the evaluation of the selected subnetworks. Ex-
periments conducted on the challenging FPHA dataset show
the substantial gain of our topologically consistent pruning
method especially at very high pruning regimes.

Index Terms— Graph convolutional networks, lightweight
design, skeleton-based recognition

1. INTRODUCTION

Deep convolutional networks are currently one of the most
successful models in image processing and pattern recogni-
tion [19]. Their principle consists in learning convolutional
filters, together with attention and fully connected layers,
that maximize classification performances. These models are
mainly suitable for data sitting on top of regular domains
(such as images) [2, 8, 19, 40], but their adaptation to irregu-
lar data (namely graphs) requires extending convolutions to
arbitrary domains [27,28,49]; these extensions are known as
graph convolutional networks (GCNs).

Two categories of GCNs exist in the literature: spectral
and spatial. Spectral methods [29-33] proceed by projecting
both input graph signals and convolutional filters using the
Fourier transform, and achieve convolution in the Fourier
domain, prior to back-project the resulting convolved signal
in the input domain. These projections rely on the eigen-
decomposition of graph Laplacians whose complexity scales
polynomially with the size of the input graphs [15,23,38], and
this makes spectral GCNs clearly intractable. Spatial meth-

ods [34-37] instead rely on message passing, via attention
matrices, before applying convolution. While spatial GCNs
have been relatively more effective compared to spectral ones,
their success is highly reliant on the accuracy of the attention
matrices that capture context and node-to-node relationships
[39]. With multi-head attention, GCNs are more accurate but
computationally more demanding, so lightweight variants of
these models should instead be considered.

Several methods have been proposed in the literature in
order to design lightweight yet effective deep convolutional
networks [42—45]. Some of them build efficient networks
from scratch while others pretrain heavy networks prior to
reduce their time and memory footprint using distillation
[46-48, 50-52] and pruning [53-55]. Pruning methods, ei-
ther unstructured or structured, allow removing connections
whose impact on the classification performance is the least
perceptible. Unstructured pruning [55,56] consists in cutting
connections individually using different criteria, including
weight magnitude!, prior to fine-tuning. In contrast, struc-
tured pruning [57, 59] aims at removing groups of connec-
tions, channels or entire subnetworks. Whereas structured
pruning may reach high speed-up on dedicated hardware
resources, its downside resides in the rigidity of the class of
learnable lightweight networks. On another side, unstructured
pruning is more flexible, but may result into fopologically in-
consistent subnetworks (i.e., either partially or completely
disconnected), and this may lead to limited generalization
especially at very high pruning rates.

In this paper, we introduce a novel approach for lightweight
GCN design that gathers the advantage of both structured and
unstructured pruning, and discards their inconvenient; i.e.,
the method imposes a few constraints on the structure of the
learned subnetworks (namely their topological consistency)
while also ensuring their flexibility at some extent. Our so-
lution is greedy and proceeds by selecting connections with
the highest magnitudes while guaranteeing their accessibility
(i.e., their reachability from the network input) and their co-
accessibility (i.e., their actual contribution in the evaluation
of the output). Hence, only topologically consistent subnet-
works are considered when selecting connections. Different
magnitude surrogates are also considered in order to greedily

lMagnilude is considered as a proxy of weight relevance.



select connections; these surrogates allow maximizing mag-
nitudes not only locally at the visited layers but also globally
at the subsequent ones, thereby resulting into more effective
lightweight networks as shown in experiments.

2. GRAPH CONVOLUTIONAL NETWORKS

Let S = {G; = (Wi, &;)}i denote a collection of graphs with
V;, &; being respectively the nodes and the edges of G;. Each
graph G; (denoted for short as G = (V, £)) is endowed with
a signal {¢)(u) € R® : u € V} and associated with an adja-
cency matrix A with each entry A, > 0iff (u,u) € € and
0 otherwise. GCNs aim at learning a set of C' filters F that
define convolution on n nodes of G (with n = |V|) as

(G*F)y=f(AUT W), 1)

here ' stands for transpose, U € R**" is the graph signal,
W € R**C is the matrix of convolutional parameters cor-
responding to the C filters and f(.) is a nonlinear activation
applied entrywise. In Eq. 1, the input signal U is projected us-
ing A and this provides for each node u, the aggregate set of
its neighbors. Entries of A could be handcrafted or learned so
Eq. 1 implements a convolutional block with two layers; the
first one aggregates signals in A/ (V) (sets of node neighbors)
by multiplying U with A while the second layer achieves
convolution by multiplying the resulting aggregates with the
C filters in W. Learning multiple adjacency (also referred to
as attention) matrices (denoted as {Ak}szl) allows captur-
ing different contexts and graph topologies when achieving
aggregation and convolution. With multiple matrices {A*},,
(and associated convolutional filter parameters {WF¥},),
Eq. 1 is updated as (G x F)y = f(Zle AFUTWH),
Stacking aggregation and convolutional layers, with multiple
matrices {A*};, makes GCNs accurate but heavy. In what
follows, we propose a novel method that makes our networks
lightweight and still effective.

3. LIGHTWEIGHT DESIGN

In what follows, we subsume any given GCN as a multi-
layered neural network gy whose weights defined as 6 =
{Wl, . ,WL}, with L being its depth, W € Rde-1%de
its /" layer weights, and d, the dimension of . The output of
a given layer ¢ is defined as

o' = f(W' ¢, re{l, . L-1}, @)
being f, an activation function. Without a loss of generality,
we omit the bias in the definition of (2).

3.1. Magnitude Pruning

Given a GCN gy, magnitude pruning (MP) consists in remov-
ing connections in gg. MP is obtained by zeroing-out a subset

of weights in 6, and this is achieved by multiplying W* by
a binary mask M* € {0,1}9¢-1*d¢_ The binary entries of
MY are set depending on whether the underlying layer con-
nections are kept or removed, so Eq. 2 becomes

o' = fo(M O WHT o1, 3)

here © stands for the element-wise matrix product. In this
definition, entries of the tensor {M*}, are set depending on
the prominence of the underlying connections in gy; MP con-
sists first in zeroing the smallest parameters (up to a prun-
ing rate) in the learned GCN gy, and then fine-tuning the re-
maining parameters. However, such MP suffers from several
drawbacks. On the one hand, removing connections individ-
ually may result into fopologically inconsistent networks (see
section 3.2), i.e., either completely disconnected or having
isolated connections. On the other hand, high pruning rates
may lead to an over-regularization effect and hence weakly
discriminant lightweight networks, especially when the latter
include isolated connections (see later experiments). In what
follows, we introduce a more principled MP that guarantees
the topological consistency of the pruned networks and allows
improving generalization even at very high pruning rates.

3.2. Our Topologically Consistent Magnitude Pruning

Our formal definition of topological consistency relies on two
principles: accessibility and co-accessibility of connections
in gg. Let M¢ ; refer to a connection between the i-th and the

j-th neurons of layer /. Mf’j is accessible if Jiy,...,40_1,

st. ML, = --- =M1 =1, and M! | is co-accessible
1,12 10—1, 2,

oo . +1 _ L _

if Figyq,...,10L, s.t. Mj,iz+1 =... = MiL—hiL = 1. Con-

sidering the products 8¢ = M! M?... M ! and S¢ =
M M2 ML, and following the above definition, it is
easy to see that ij is accessible (resp. co-accessible) iff the
i-th column (resp. j-th row) of S’ (resp. SY) is different from
the null vector. A network is called topologically consistent
iff all its connections are both accessible and co-accessible.
Accessibility guarantees that incoming connections to the i-th
neuron carry out effective activations resulting from the eval-
uation of gy up to layer £. Co-accessibility is equivalently im-
portant and guarantees that outgoing activation from the j-th
neuron actually contributes in the evaluation of the network
output. A connection ij — not satisfying accessibility or
co-accessibility and even when its magnitude is large — be-
comes useless and should be removed when gy is pruned.

For any given network, parsing all its topologically con-
sistent subnetworks and keeping only the one with the largest
magnitudes is highly combinatorial. Indeed, the accessibility
of a given connection depends on whether its preceding and
subsequent ones are kept or removed, and any masked con-
nections may affect the accessibility of the others. In what fol-
lows, we introduce a greedy algorithm that prunes a given net-
work by maximizing the magnitude of its connections while
guaranteeing its topological consistency.



Algorithm 1: Topologically consistent MP

Input: Weight tensor {Wl, .. ,WL}, MaxKeptConnections.
Output: Mask tensor {M*, ... ,MZE}.

ne < 0; {M* < 0};

while nc < MaxKeptConnections do

Select 41 from {1,...,d1};

for/ =1to L — 1do

; £ x70+17.

1041 HargmaxjeNg(iZ),k [Wi[,j Wj,k }, // A
stochastic variant is to select a random
walk from ip to ip41 € Ng(ig) proportionally

¢ Are+1

to {W3, ; WY enytio) k-

s 4 _

1f(Mi€,iH1 = 0) then

L nc+nc+1;

14 1:
igyte41 < b

3.3. Algorithm

Our solution parses neurons in gy layer-wise; each parsing
consists in finding a complete chain from the input to the out-
put of go. Given a neuron ¢ in layer /, its subsequent neuron in
the chain corresponds to the one which maximizes magnitude
among the forward neighbors of 7 (denoted as Ny(7)). This
process is repeated for different input neurons till exhausting
a targeted pruning rate. This solution maximizes magnitude
locally; however, there is not guarantee that neurons visited
in the subsequent layers will have sufficiently large magni-
tude connections. In order to circumvent this issue, instead of
locally maximizing {ij }ien (i), We globally maximize a
surrogate criterion as

x7L+1

¢
max Wi,j ik

s ke{l,...,dp}, 4
with W = WL WE (see also algorithm 1). Un-
der row-stochasticity of {W*},, the matrix W*+! models an
m-step markovian process (with m = L — ¢) where the con-
ditional transition likelihood, between two neurons, is pro-
portional to the sum of the conditional likelihoods of all the
possible m — 1 steps linking these two neurons. Nevertheless,
Eq. 4 could be contaminated by a large number of small mag-
nitude connections. This limitation motivates the introduction
of a slight variant (called a-powered magnitude) with Wi
recursively defined as

«
W@—o—l _ [W£+1]é [WZ—&-Q]% , 1/a c [1,+OO[, (5)
here the power is applied entrywise. When a — 0, Eq. 4
captures the largest magnitude path® outgoing from the i-th
to the k-th output neuron of gy (via j). When « €]0, 1[, Eq. 4
models instead the average of dominating magnitude paths
outgoing from the i-th neuron (again via j), so the effect of
spurious (small magnitude) connections could be attenuated.

2The magnitude of a path is defined as the sum of all its connection magnitudes.

3.4. Stochasticity

In spite of making the selected subnetworks topologically
consistent and hence effective (as shown later in experi-
ments), the aforementioned procedure is deterministic and
relies on the hypothesis that only connections with the highest
magnitudes are essential while in practice, other connections
could also be used in order to explore further subnetworks.
Hence, instead of considering a deterministic parsing ap-
proach, we consider a stochastic sampling process. More
precisely, neurons are again visited layer-wise, but the sub-
sequent layer neurons are selected by sampling a random
walk distribution (see the commented variant in algorithm 1);
note that neurons that maximize magnitude are still preferred
(with a high probability), nevertheless other neurons will also
be selected depending on their magnitude distribution. This
stochastic variant turns out to be more effective, especially at
high pruning regimes, as shown subsequently.

4. EXPERIMENTS

We evaluate the performance of our GCNs on the task of ac-
tion recognition using the First-Person Hand Action (FPHA)
dataset [3]. The latter includes 1175 skeletons belonging to
45 action categories (with style, speed, scale and viewpoint
variations). Each video (sequence of skeletons) is initially
described with a graph G = (V, £) where each node v; € V
corresponds to the j-th hand-joint trajectory (denoted as
{p%}+) and an edge (vj,v;) € & exists iff the j-th and the
i-th trajectories are spatially connected. Each trajectory in
G is processed using temporal chunking [26]: first, the total
duration of a sequence is split into M equally-sized temporal
chunks (M = 32 in practice), then the trajectory coordinates
{ﬁ;}t are assigned to the M chunks (depending on their time
stamps) prior to concatenate the averages of these chunks.
This produces the raw description (signal) of v;.

Implementation details and baseline GCN. We trained the
GCNs end-to-end using the Adam optimizer [1] for 2,700
epochs with a batch size equal to 600, a momentum of 0.9 and
a global learning rate (denoted as v(t)) inversely proportional
to the speed of change of the cross entropy loss used to train
our networks. When this speed increases (resp. decreases),
v(t) decreases as v(t) < v(t — 1) x 0.99 (resp. increases
as v(t) « v(t —1)/0.99). In all these experiments, we use
a GeForce GTX 1070 GPU (with 8 GB memory). We eval-
uate the performances using the 1:1 setting proposed in [3]
with 600 action sequences for training and 575 for testing,
and we report the average accuracy over all the classes of ac-
tions. The architecture of our baseline GCN (taken from [58])
includes an attention layer of 16 heads applied to skeleton
graphs whose nodes are encoded with 32-channels, followed
by a convolutional layer of 128 filters, and a dense fully con-
nected layer. In total, this initial network is relatively heavy



(for a GCN) and its number of parameters reaches 2 millions.
Nevertheless, this GCN is accurate compared to the related
work on the FPHA benchmark as shown in Table. 1. Consid-
ering this GCN baseline, our goal is to make it lightweight
while maintaining its high accuracy.

Method Color Depth Pose Accuracy (%)
Two stream-color [4] v X X 61.56
Two stream-flow [4] v X X 69.91
Two stream-all [4] v X X 75.30
HOG2-depth [5] X v X 59.83
HOG2-depth+pose [5] X v v 66.78
HON4D [6] X v X 70.61
Novel View [7] X v X 69.21
1-layer LSTM [9] X X v 78.73
2-layer LSTM [9] X X v 80.14
Moving Pose [10] X X v 56.34
Lie Group [11] X X v 82.69
HBRNN [12] X X v 77.40
Gram Matrix [13] X X v 85.39
TF [14] X X v 80.69
JOULE-color [16] v X X 66.78
JOULE-depth [16] X v X 60.17
JOULE-pose [16] X X v 74.60
JOULE-all [16] v v v 78.78
Huang et al. [17] X X v 84.35
Huang et al. [18] X X v 71.57
Our GCN baseline X X v 86.08

Table 1: Comparison of our baseline GCN against related work on FPHA.

Lightweight CGN performances. Table. 2 shows the ac-
curacy of our lightweight GCNs for different pruning rates,
and other settings including topological consistency (TC)
and stochasticity. From these results, the impact of TC is
substantial on highly pruned GCNs. We also observe the pos-
itive impact of stochasticity which allows exploring different
subnetworks. Note that the impact of TC is less important
(and sometimes worse) with low pruning regimes; indeed,
low pruning rates produce subnetworks with already enough
(a large number of) connections and having some of them
neither accessible nor co-accessible produces a well known
regularization effect [41]. On another side, over-pruning
networks, without TC, produces an over-regularization ef-
fect (i.e., under-fitting); the resulting lightweight networks
become highly disconnected. In contrast, TC ensures connec-
tivity (accessibility and co-accessibility) in spite of learning
very lightweight networks, it also mitigates under-fitting and
thereby improves generalization (see again accuracy in Ta-
ble. 2 and how the A-C difference between standard MP and
TC MP is accentuated as pruning rates increase). Finally, Ta-
ble. 3 shows the impact of « (in Eq. 5) on the performance of
our lightweight GCNs. From this table, sufficiently (but not
very) large o makes accuracy improving; as m-step magni-
tude estimation takes into account the dominating magnitude
paths, it is more robust.

o) o
@\6 R o N C 0
S 3 o » ¢ &
o < o ¢ T o

0 % NA NA 1967616 100 86.08 Baseline GCN
X X 100 86.08 Standard MP
X v 100 86.08 Stochastic MP

30% v X 983808 100 86.08 TC MP
v v 100 86.08 TC Stoch MP
X X 99.4 85.73 Standard MP
X 4 99.8 85.91 Stochastic MP

75% v X 491904 100 84.86 TC MP
v v 100 85.91 TC Stoch MP
X X 89.9 85.04 Standard MP
X 4 92.3 85.56 Stochastic MP

90% v X 196760 100 83.65 TC MP
v v 100 85.56 TC Stoch MP
X X 72.3 83.82 Standard MP
X v 76.5 85.39 Stochastic MP

0

93% v X 98379 100 85.73 TC MP
v v 100 84.86 TC Stoch MP
X X 21.2 76.00 Standard MP
. X 4 28.2 74.08 Stochastic MP

D%y x 19674 100 83.47 TC MP
v v 100 80.69 TC Stoch MP
X X 12 2.78 Standard MP
X v 0.0 NA Disconnected

99.9% v X 1966 100 70.08 TC MP
v v 100 73.39 TC Stoch MP

Table 2: Detailed performances and ablation study, for different pruning
rates (# of parameters) and other criteria including topological consistency
(TC) and stochasticity. This table also shows the resulting percentage of
accessible and co-accessible connections (denoted as A-C). These results are
obtained by maximizing magnitudes locally (without Egs. 4 and 5, i.e., by
maximizing {Wf,j}jeNg(z‘) instead). NA stands for not applicable.

1/a ‘ 1 1.5 2.5 7 10 20 50

Accuracy (%) ‘69.56 71.82 7234 7321 7617 72.86 66.60

Table 3: Accuracy for different « settings when maximizing magnitudes
globally (i.e., with Egs. 4 and 5). Both TC and stochasticity are used, and
pruning rate (PR) is set to 99.9 %. Compared to table 2, with the same PR,
the accuracy improves significantly when « is set appropriately (ac = 10).

5. CONCLUSION

In this paper, we introduce a novel pruning method that trains
very lightweight GCNs while guaranteeing their topological
consistency. The latter is an important property which guar-
antees the contribution of all accessible and co-accessible
network connections in the learned decision functions. Ex-
periments conducted on the challenging task of hand-gesture
recognition shows the maintained high accuracy of our topo-
logically consistent lightweight GCNs, even at very high
pruning regimes. As a future work, we are currently in-
vestigating the extension of this method to other network
architectures and datasets.
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