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ABSTRACT
Non-local (NL) block is a popular module that demonstrates
the capability to model global contexts. However, NL block
generally has heavy computation and memory costs, so it
is impractical to apply the block to high-resolution feature
maps. In this paper, to investigate the efficacy of NL block,
we empirically analyze if the magnitude and direction of
input feature vectors properly affect the attention between
vectors. The results show the inefficacy of softmax operation
which is generally used to normalize the attention map of the
NL block. Attention maps normalized with softmax operation
highly rely upon magnitude of key vectors, and performance
is degenerated if the magnitude information is removed.
By replacing softmax operation with the scaling factor, we
demonstrate improved performance on CIFAR-10, CIFAR-
100, and Tiny-ImageNet. In Addition, our method shows
robustness to embedding channel reduction and embedding
weight initialization. Notably, our method makes multi-head
attention employable without additional computational cost.

Index Terms— Attention, Non-local block, Transformer

1. INTRODUCTION

Self-attention layers such as Non-Local (NL) block [1] and
Transformer [2] were proposed to capture long-term depen-
dencies, and considered as a key component in Natural Lan-
guage Process (NLP) deep learning architectures [3, 4, 5, 6].
To capture global features, self-attention layers model rela-
tionship between pixels regardless of distance. This property
benefits not only machine translation, but also most computer
vision tasks. However, NL blocks have been employed in a
limited manner in computer vision owing to their heavy com-
putation and memory cost that increases as a quadratic func-
tion of the number of pixels. Generally the number of pixels
is much larger than the number of words, and thus the cost is
not scalable to realistic input image sizes.

Evidently, reducing the cost of NL blocks is still an active
research area [7, 8, 9, 4, 10, 11, 12]. Previous studies have
focused on introducing lightweight NL blocks and methods
to efficiently employ NL blocks. They suggested lightweight
NL blocks by efficiently reducing spatial size [7, 9, 13] and
approximating the attention while minimizing the loss of the

capability to capture long-term dependencies. To optimize
the trade-off between the capability to obtain global relation-
ships and computational efficiency, previous methods have
relied on heuristic, adopted approximation or neural archi-
tecture search (NAS) algorithms [14, 15, 8]. These methods
demonstrated plausible performance and reduced computa-
tional overhead, but reducing the spatial size and the number
of NL block cannot avoid the loss of the capability to incor-
porate global context.

In this paper, we empirically analyze the efficacy of soft-
max operation of NL blocks using the geometric definition of
the dot product. In most cases, attention is computed using
the dot-product and normalized with softmax operation [1, 2,
4, 7, 9, 3, 13, 6]. Geometrically, dot-product is a multiplica-
tion of magnitudes and cosine similarity between two pixel
vectors. From this perspective, we suspect that softmax op-
eration makes modeling relationship using cosine similarity
inefficient for the following reason. To focus on angular re-
lationships, let’s assume that query and key vectors have a
unit norm. Then, if softmax operation is employed to normal-
ize attention map, attention between query and key is mini-
mized when dot product is −1. Thus, for a single key vector
to have the minimum attention with more than two queries,
those queries should have the same direction, reducing an-
gular variation of queries. However, if attention is not nor-
malized by softmax operation, extremely low attention can be
expressed by orthogonality between queries and keys. For a
single key vector, queries with zero attention can be diversely
selected in its hyperplane of dimension C − 1 that is orthog-
onal to the key vector, where C is the channel size of queries
and keys. Hence, we suspect softmax operation might limit
the capability to model relationships, and make NL block de-
pendent on magnitude rather than direction of vectors.

To verify our assumption, we train PreResNet [16] with
NL blocks on CIFAR-10/100 and Tiny-ImageNet [17, 18],
and visualize the attention maps of NL block with randomly
sampled images in Figure 1. Attention maps are matrices of
size HW × HW which are computed by Eq 1. Attention
maps of NL block demonstrate clear vertical lines; it indicates
that attention value rarely changes despite varying query, and
attention is dominantly affected by keys itself (e.g., magni-
tude). In other word, cosine similarity is less discriminatively
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(a) CIFAR-10 / NL (b) CIFAR-100 / NL (c) Tiny-ImageNet / NL

(d) CIFAR-10 / Ours (e) CIFAR-100 / Ours (f) Tiny-ImageNet / Ours
Fig. 1: Visualization of the attention maps of randomly sampled images. Attention maps are size of HW × HW , where the
X-axis and Y-axis are key and query pixels, respectively. Attention maps of NL block are clearly affected by few key pixels,
and vertical lines are observed. By contrast, attention maps of our method does not demonstrate a vertical line.

trained as we suspected. Therefore, we introduce the scaled
NL block that does not employ softmax operation, and it will
be described in Section 3.1. As illustrated in Figure 1, our
method does not demonstrate a straight vertical line, and it
indicates that attention depends on both queries and keys.

Scaled NL block shows two beneficial properties owing to
our method properly utilizes the direction of feature vectors.
First, scaled NL block shows robustness to embedding chan-
nel reduction. Because the proposed method efficiently uti-
lizes the embedding feature space, performance degradation
due to embedding channel reduction is significantly smaller
than for the NL block. Second, scaled NL block demonstrates
robustness to embedding weight initialization. NL block per-
forms better when the weight of the embedding layer is initial-
ized with a standard deviation of 0.01, which is tuned hyper-
parameter. By contrast, proposed method is suitable to He
initialization [19] which is the standard initialization method.
In addition, we generally obtain better performance on Pre-
ResNet [16] and Wide-Residual Network (WRN) [20] with
CIFAR-10/100 [17], and Tiny ImageNet [18]. Finally, we
investigate the memory consumption and train step time of
multi-head attention of NL blocks. The memory consump-
tion and train step time of NL block are linear functions of
the number of heads. By contrast, our method makes multi-
head attention adoptable without additional computation cost.

2. RELATED WORKS

The monumental attention layer, Transformer [2] achieved
the best performance at the time on machine translation tasks
based solely on attention mechanisms. Wang et al.[1] em-
ployed attention mechanisms in computer vision applications
to incorporate the global spatio-temporal context. Since their

success, these self-attention layers have been widely used to
model long-range relationships in variou applications [4, 3, 7,
10, 8, 9, 13]. Self-attention layers can be expressed generally
using the following formula:

Ai,j =
1

Z(x)
f(xi,xj), (1)

yi =
∑
∀j

Ai,jg(xj), (2)

where x,y ∈ RHW×C are the input and output of the NL
block, and i, j are the indices of the query and key pix-
els. A ∈ RHW×HW is the attention map. In most cases,
NL block takes the form f(xi,xj) = e

1√
C
θ(xi)·φ(xj) and

Z(x) =
∑
∀j f(xi,xj), where θ, φ, g are the linear embed-

ding layers. In this case, NL block gets attention from the
embedded dot product that normalized with softmax opera-
tion.

3. GEOMETRICAL ANALYSIS

3.1. Scaled Non-Local Block
Previous studies [10, 8, 11, 12] have suggested attention mod-
ules without softmax operation for improved computational
efficiency. However, the inefficacy of softmax operation has
not been fully analyzed yet. To empirically analyze the inef-
ficacy of softmax operation, we introduce the NL block with-
out softmax operation. Instead of softmax operation, we di-
vide the output of NL block by

√
HW to stabilize the block,

where H,W are the height and width of the input matrix, re-
spectively1. We empirically verify that the proposed method

1Assume that elements of g(x) and A = 1√
C
θ(x) ·φ(x)> are indepen-

dent gaussian random variables with mean 0 and variance 1. Then, A · g(x)
has mean 0 and variance HW . Thus, we scaled the output by

√
HW .



without scaling factor is often diverging, but scaling success-
fully prevents divergence. In this paper, we denote the block
as scaled Non-local Block. If softmax operation is replaced
with the scaling factor, Eq 2 can be expressed as follows by
employing the associative law:

y =
1√
HW

(
1√
C
θ(x) · φ(x)>) · g(x)

=
1√

HWC
θ(x) · (φ(x)> · g(x)),

(3)

where θ, φ, and g are linear embedding layers. As suggested
in [10, 8], it can largely reduces the computational cost by
employing the associative law, even two forms are numeri-
cally equivalent. In the following sections, we compare the
properties of NL block and scaled NL block to demonstrate
the inefficacy of softmax operation.

3.2. Importance Analysis
As mentioned earlier, we suspect that softmax operation lim-
its the capability to model relationships between vectors, be-
cause it reduces the angular variations of query vectors hav-
ing zero attention to a single key vector. For this reason, we
assume that the cosine similarity terms of the dot-product is
inefficiently learned, and attention maps highly rely on the
magnitude of key vectors. To verify our assumption, we il-
lustrate attention maps of the NL block in Figure 1, which
demonstrate clear vertical lines. This indicates that attention
map are highly affected by the magnitude of key vectors. By
contrast, attention maps of scaled NL block do not show ver-
tical lines. For further investigation, we train PreResNet with
a magnitude only NL block and a direction only NL block,
which are respectively expressed by the following formulas:

θmag(xi) = ‖θ(xi)‖, φmag(xi) = ‖φ(xi)‖, (4)

θdir(xi) =
θ(xi)

‖θ(xi)‖
, φdir(xi) =

φ(xi)

‖φ(xi)‖
. (5)

To verify whether NL blocks properly utilize the cosine
similarity information, we replace the {θ, φ} of Eq 2 with
{θmag, φmag} or {θdir, φdir}. As shown in Table 1, the
performance of direction only NL block is severely worse
than for the direction only scaled NL block. By constrast,
magnitude only scaled NL block demonstrates comparable
performance with magnitude only NL block. This indicates
that by replacing softmax operation to scaling factor, the
capability to utilize angular information is improved while
the capability to utilize magnitude information is maintained.

3.3. Robustness
In this section, we demonstrate the advantages of our method.
As confirmed in Section 3.2, attention without softmax oper-
ation is more likely to learn angular relationships. Hence, we
assume our method has the capability to efficiently represent

Dataset Model Base Mag Dir

CIFAR-10 PreResNet56+3NL 5.73 5.83 6.01
PreResNet56+3Ours 5.64 5.76 5.67

CIFAR-100 PreResNet56+3NL 25.12 25.26 25.44
PreResNet56+3Ours 24.53 25.20 24.68

Table 1: Comparison of test errors(%) on PreResNet56 with
CIFAR-10/100. Results are averaged over 10 random seeds.
Base refers to NL block utilizing both magnitude and direc-
tion of vectors.
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Fig. 2: Illustration of test errors(%) with respect to embed-
ding channel size. We train PreResNet56 by varying the NL
blocks on CIFAR-10/100. Both (a) and (b) show that our
method improves robustness to embedding channel reduction.

relationships. We verify this by checking the performance as
reducing the embedding channel dimension, and obtain the
expected results. We train PreResNet56 with 3 NL blocks in-
serted to the second residual block. As illustrated in Figure 2,
our method demonstrates robustness to embedding channel
reduction.

Our method also demonstrates robustness to embedding
weight initialization. We compare the performance with three
initialization methods: He initialization [19] and initialization
with standard deviation of {0.0, 0.01}. As shown in Table 2,
the weight of NL block should be initialized with a standard
deviation of 0.01, which is suggested in [1]. It is tuned magic
number, and much smaller than the standard deviation of the
He initialization. By contrast, our method shows the best per-
formance with the standard He initialization.

Dataset Model Initialization
He [19] σ = 0.01 σ = 0.0

CIFAR-10 PreResNet56+3NL 5.91 5.73 6.23
PreResNet56+3Ours 5.64 5.69 6.14

CIFAR-100 PreResNet56+3NL 25.82 25.12 26.24
PreResNet56+3Ours 24.53 24.62 26.24

Tiny-ImageNet PreResNet50+3NL 35.84 35.35 37.5
PreResNet50+3Ours 35.08 35.34 37.23

Table 2: Comparison of test errors(%) on PreResNet50 and
PreResNet56 with CIFAR-10/100 and Tiny-ImageNet. Re-
sults of CIFAR and Tiny-ImageNet are averaged over 10 and
3 random seeds, respectively.



Methods Number of heads
0 1 2 4

Test Error @ CIFAR-10
[ % ]

NL 6.37 5.73 5.69 5.62
Ours 5.64 5.48 5.43

Test Error @ CIFAR-100
[ % ]

NL 26.59 25.12 24.63 24.43
Ours 24.53 24.17 24.12

Memory
[ MB ]

NL 2827 3789 4269 5229
Ours 3453 3429 3417

Train Step Time
[ ms/batch ]

NL 62.37 83.11 88.96 100.93
Ours 77.92 76.97 76.51

Table 3: Comparison of test errors(%), memory(MB), and train step time(ms/batch) on PreResNet56 with CIFAR-10/100. 3
NL blocks are inserted, and results of NL block with 0 head is obtained on PreResNet56 without NL block. Test errors are
averaged over 10 random seeds, and train step times are averaged over 300 iterations.

Dataset Model NL Ours

CIFAR-10
PreResNet32 6.81 6.65
PreResNet56 5.66 5.43

PreResNet110 5.29 4.93

CIFAR-100

PreResNet32 29.89 28.84
PreResNet56 24.33 24.12

PreResNet110 23.28 22.62
WRN-28-10 18.51 18.18

Tiny-ImageNet PreResNet50 34.76 34.385

Table 4: Comparison of test errors(%) on PreResNet32, Pre-
ResNet50, and PreResNet56 with CIFAR-10/100 and Tiny-
ImageNet. 3 NL blocks with 4 heads are inserted. The Re-
sults of CIFAR and Tiny-ImageNet are averaged over 10 and
3 random seeds, respectively.

4. EXPERIMENTS

In this section, we describe details of experiments. We in-
sert 3 NL blocks with 4 heads to the second residual block of
PreResNet and Wide-Residual Networks (WRN). To investi-
gate the inefficacy of softmax operation, we conduct experi-
ments by varying the NL blocks on CIFAR-10, CIFAR-100,
and Tiny-ImageNet.

For CIFAR datasets, we train networks with 50k training
images using the standard data augmentation, and evaluate
the top-1 errors on 10k test images. We employ SGD with
a mini-batch size of 128. Momentum and weight decay are
set to 0.9 and 1e-4, respectively. Learning rate is initially set
to 0.1, and divided by 10 at 81 and 122 epochs. Training is
stopped at 164 epochs.

For Tiny-ImageNet, we train with the 100k training im-
ages using the standard data augmentation with 56 pixels
cropping, and evaluate the top-1 error on 10k test images.
First, we pretrain PreResNet without NL block on Tiny-
ImageNet with SGD and mini-batch size of 128. Momentum
and weight decay are set to 0.9 and 1e-4, respectively. Learn-
ing rate is initially set to 0.1, and divided by 10 every 30
epochs. Training is stopped at 100 epochs. Then, we insert

NL blocks to the pretrained networks, and fine-tune. We set
the initial learning rate to 0.01, divide it by 10 at 40 epochs,
and finish the training at 60 epochs.

As shown in Table 4, we obtain improved performance
on PreResNet and WRN with CIFAR-10/100 and Tiny-
ImageNet. We constantly get better results regardless of
the depth or width of the networks. We get 0.27% and 0.66%
accuracy improvement on PreResNet56 with CIFAR-10 and
CIFAR-100, respectively. Additionally, as shown in Table 3,
our method reduces computational cost by removing softmax
operation and employing the associative law. As suggested
in [2], we set the embedding channel size to C/Nh, where
C and Nh are the channel size of input features and num-
ber of heads, respectively. Notably, our method can employ
multi-head attention without additional computation cost, be-
cause the computation cost of our method is complexity of
HW (C/Nh)

2 ×Nh

5. CONCLUSION

In this paper, we investigate the way in which attention maps
can be calculated. We empirically analyze the inefficacy of
softmax operation and superiority of scaled NL block. We vi-
sualize the attention maps and compare the performance of
the magnitude only NL block and direction only NL block to
verify that softmax operation makes the attention strongly rely
on the magnitude of key vectors. By contrast, our method
is more efficiently learn angular relationships using the co-
sine similarity. Our method demonstrates robustness to em-
bedding channel reduction and embedding weight initializa-
tion. In addition, our method generally improves the per-
formance with PreResNet and WRN on CIFAR-10/100 and
Tiny-ImageNet. Notably, by employing the associative law,
the computational cost of our method is largely reduced to a
linear function of the number of pixels, and our method can
employ multi-head attention without additional cost.
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