
This document is the accepted version of the paper that has been published as: N. Le et al., ”Bridging the Gap Between Image
Coding for Machines and Humans,” 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France,
2022, pp. 3411-3415, doi: 10.1109/ICIP46576.2022.9897916, url: https://ieeexplore.ieee.org/document/9897916. © 2022

IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

40
1.

10
73

2v
1 

 [
ee

ss
.I

V
] 

 1
9 

Ja
n 

20
24



BRIDGING THE GAP BETWEEN IMAGE CODING FOR MACHINES AND HUMANS

Nam Le∗† Honglei Zhang† Francesco Cricri† Ramin G. Youvalari†

Hamed Rezazadegan Tavakoli† Emre Aksu† Miska M. Hannuksela† Esa Rahtu∗

†Nokia Technologies, ∗Tampere University

ABSTRACT

Image coding for machines (ICM) aims at reducing the
bitrate required to represent an image while minimizing the
drop in machine vision analysis accuracy. In many use cases,
such as surveillance, it is also important that the visual qual-
ity is not drastically deteriorated by the compression pro-
cess. Recent works on using neural network (NN) based ICM
codecs have shown significant coding gains against traditional
methods; however, the decompressed images, especially at
low bitrates, often contain checkerboard artifacts. We propose
an effective decoder finetuning scheme based on adversarial
training to significantly enhance the visual quality of ICM
codecs, while preserving the machine analysis accuracy, with-
out adding extra bitcost or parameters at the inference phase.
The results show complete removal of the checkerboard arti-
facts at the negligible cost of −1.6% relative change in task
performance score. In the cases where some amount of arti-
facts is tolerable, such as when machine consumption is the
primary target, this technique can enhance both pixel-fidelity
and feature-fidelity scores without losing task performance.

Index Terms— Image coding for machines, GANs, fine-
tuning, VCM

1. INTRODUCTION

Traditional image coding systems such as JPEG [1] and VVC
[2] compress images to reduce the amount of the data re-
quired for storing and transferring while maintaining satisfac-
tory visual quality for human viewers. On the other hand, Im-
age Coding for Machines (ICM) systems aim to provide bet-
ter compression efficiency when the primary consumers are
machines that perform certain computer vision tasks [3, 4].
Recent works on ICM have shown convincing evidences
that machine-oriented image codecs significantly improve the
compression efficiency over traditional image codecs [3,5,6].
In many applications, e.g. surveillance, although machines
are the main consumers, human involvement is occasionally
required or even mandatory. Thus, support for human con-
sumption is desired for ICM codecs.

However, the outputs of convolutional neural network
(CNN) based ICM codecs, in particular at low bit-rate range,
usually contain repetitive artifact patterns, also referred to as

“checkerboard artifacts” [5, 6], which could be easily per-
ceived by humans as “distortion” and significantly degrade
the experience for human viewers. To support human con-
sumption, ICM systems often include separate branches for
machine consumption and human consumption [3,4,7], which
unavoidably incurs bitrate overheads due to the need for en-
coding two bitstreams. In addition, such architecture design
increases the complexity of the codec significantly.

In this paper, we propose a novel training technique for
end-to-end learned ICM codecs to improve the visual qual-
ity without additional processing components or bitstreams
for human consumption. In the proposed technique, selected
layers from the decoder of a pretrained ICM codec are fine-
tuned using a PatchGAN [8] adversarial training mechanism.
Our experiments show that after being finetuned, the quality
of the decoded images is significantly improved without com-
promising the performance of the machine tasks.

2. RELATED WORK

End-to-end learned codecs are a promising direction over
conventional codecs for machine consumption since the
codec may be optimized directly via a learning signal ob-
tained through the task networks performing computer vision
tasks. The authors of [5, 9] proposed an ICM codec with en-
coder, decoder, and probability model implemented by neural
networks. An input image is first converted to a latent repre-
sentation. Then, an arithmetic encoder encodes the quantized
latent representation using the prior distribution estimated by
the probability model. At the decoder side, an arithmetic
decoder decodes the bitstream into the latent representation
with the prior from the same probability model as the one on
the encoder side and the ICM decoder reconstructs the image
from the latent representation.

Although machine consumption is the main target of an
ICM codec, human consumption is required for many appli-
cations, e.g., surveillance systems. Various system architec-
tures have been proposed to support this requirement. Sep-
pala et al. [7] proposed a multi-layer coding system compris-
ing two branches: one implemented by a conventional codec
for human consumption and one implemented by a learned
codec that transfers additional information to enhance the per-



formance of machine consumption. A similar architecture is
proposed in [10] where multiple learned codecs are used for
human vision and various machine tasks separately. These
designs significantly complicate the system and make opti-
mization difficult. Also, an additional bitstream is required
for targeting human consumption of images. As the task net-
works of these ICM systems are trained using images which
are either uncompressed or compressed with high fidelity for
human vision, the outputs of the ICM codecs are visually ac-
ceptable for humans. However, clearly noticeable checker-
board artifacts are present in the output, especially at lower
bitrates, which significantly degrade the quality perceived by
human viewers. Thus, it is important to improve the quality
of the outputs of ICM codecs for human consumption without
significantly degrading the machine task. Zhang et al. [11]
propose to blur the features in CNN to mitigate the aliasing
problem, but we found it is ineffective in deeper CNNs.

Generative Adversarial Networks (GANs) were intro-
duced as a system for generating realistic natural images and
later used in many other applications, including for visual
quality enhancement. Isola et al. [8] introduced the Patch-
GAN technique for image-to-image translation, which re-
stricts the attention of the networks in local image patches,
thus enforces high-frequency correctness. Further, in [12],
both the global and local patches are used for image deblur-
ring. GANs have been also used in video coding systems .
In [13], the authors used conditional GANs architecture to
improve the perceptual visual quality of learned image com-
pression targeting human consumption. The analysis in [14]
suggests that the said adversarial system improves task per-
formance of the codec.

Next, we will describe the proposed PatchGAN-based
method that significantly improves the visual quality of the
compressed images of an ICM codec for human consumption.

3. PROPOSED METHOD

3.1. Baseline image codec model

Similar to [5, 6, 9], we first train a base codec using metrics
such as mean squared error (MSE) for human consumption,
then finetune it to achieve better task performance. We follow
the overall model training strategy as described in [5].

Our codec comprises 3 types of building blocks: Basic,
Downsampling, and Upsampling. The B blocks are type A
basic blocks defined in ResNet [15] with 128 output chan-
nels and PReLU activation function [16]. The D blocks are B
blocks that have stride-2 conv (convS2) for their first conv and
shortcut projection. Similarly, the U blocks use a sequence
of a 512-channel conv followed by a PixelShuffle [17] layer
(PSConv) for those parts. The layer orders in the encoder and
decoder of the codec can be described as D-B-D-B-convS2
and B-U-B-U-B-PSConv, respectively.

The training loss, which imposes high task performance,

follows the same formulation in [5]:

Ltotal = wrateLrate + wmseLmse + wtaskLtask, (1)

where wrate, wmse, wtask are scalar weights, Lrate, Lmse,
Ltask are the loss terms for bitcost, distortion and task per-
formance, respectively. These terms are defined in the same
way as in [5], except for Ltask which is replaced by a proxy
loss Lproxy in our setup. Due to the correlations in the inter-
mediate level features of different vision tasks [9], we can use
an intermediate feature distortion metric as a proxy for Ltask,
thus making the codec task-agnostic. Additionally, using a
feature-based loss as such enables the training of the model
with cropped images which is much more efficient. Similar
to [9, 18], we define Lproxy as follows:

Lproxy = MSE(F2(x),F2(x̂)) +MSE(F4(x),F4(x̂)),
(2)

where MSE denotes the mean square error and Fk(t) de-
notes a feature tensor extracted from the Pk layer of the FPN
[19] feature extractor network given the input t.

3.2. Codec finetuning with PatchGAN

In order to improve the visual quality of a learned image
codec, one can resort to re-training the model for human vi-
sion distortion metrics such as PSNR or SSIM [20]. How-
ever as demonstrated in recent works [6, 14], high scores in
these metrics usually come with the cost of significant degra-
dation of task performance. Furthermore, [9] provides us
with evidences that even finetuning a single component of the
system can achieve good performance gains. We propose a
model finetuning scheme where a PatchGAN [8] discrimina-
tor is applied to guide the codec to effectively suppress the
artifacts in its outputs. In this scheme, illustrated by Fig. 1,
the image codec acts as the generator G that takes uncom-
pressed image x as input and generates the compressed image
x̂ = G(x), and the discriminator D, implemented as a CNN
following [8], tries to distinguish the image patches from x
from the ones from x̂ by detecting the noise pattern in x̂ pro-
duced by the codec. The reasons for choosing PatchGAN
over normal GANs are: i) a small patch from x̂ can contain
an adequate amount of artifacts; ii) the training runs much
faster with small patches; iii) we can limit the random halluci-
nations that are typically introduced in GAN-based training,
which may damage the task performance. Our experiments
show that the compression artifacts are sufficiently removed
by finetuning only the decoder. With the encoder frozen, the
bitrate is unchanged.

Finetuning objective: We empirically found the pro-
posed system is sufficiently robust to different adversarial loss
functions. Therefore, we choose the vanilla GAN objective
function for the sake of simplicity:

LGAN (G,D) = Ex∼px [logD(x)] + [log(1−D(G(x)))]
(3)



Unlike [8], we only sample a small fixed number of square
patches to feed the discriminator since the artifacts appear
uniformly in the decoded images. Besides, we do not con-
dition the discriminator on the input image x. In our system,
the generator is a pretrained codec that outputs a fair recon-
struction x̂ of x. Therefore, we use ℓ2-distance to impose
a weak pixel-fidelity constraint. Our funetuning objective is
formulated as:

G∗ = arg min
G

max
D

Ex∥x− G(x)∥22︸ ︷︷ ︸
LL2

+λa · LGAN (G,D)

(4)
where the weight of the adversarial loss is set as λa = 10−3

in our tests if not stated otherwise.

Encoder Decoder

Fig. 1. The overview of the finetuning scheme using Patch-
GAN discriminator. The dashed lines denote gradient back-
propagation flows and dotted boxes denote the parameters
getting updated by the optimizer. The green lines indicate
the data from the input of the ICM codec and the red lines
indicate the data from the output of the ICM codec.

4. EXPERIMENTS

4.1. Experimental setup

Dataset and task evaluation: We used the Open Images
V6 [21] dataset of 9.2M high quality JPEG images for train-
ing and evaluation. The training and finetuning processes of
the base model saved the model weights in subsequent check-
points. Every checkpoint was trained with random 6000 im-
ages from the training split of the dataset. Each image was
randomly cropped to a 512 × 512 patch. The task perfor-
mance measured in mAP1 was obtained by following the In-
stance Segmentation testing conditions in [22], which consists
of tailored benchmarks for the practical use cases of MPEG
Video Coding for Machines (VCM). In addition, we also car-
ried out evaluations on other common visual metrics, namely
PSNR, SSIM [20] and VGG19 [23] perceptual loss23.

1https://storage.googleapis.com/openimages/web/
evaluation.html

2https://pytorch.org/docs/stable/torchvision/
models.html

3Same as proxy loss in [9] but apply on the 2nd and 5th layers.

Training: The base codec was trained following the
strategy proposed in [5] for 200 checkpoints. The proxy
loss Lproxy used the FPN backbone of the MaskRCNN [24]
network2 to extract the feature maps at the top-down pathway.
The PatchGAN-based finetuning experiments were performed
on different settings of patch sizes (64×64, 128×128), num-
ber of patches (1, 3, 5) per image and learning rates (2×10−5,
2× 10−9). We empirically found that finetuning only the first
2 layers of the decoder sufficiently removed the artifacts ef-
fect whilst keeping the number of updated parameters to min-
imum, which led to reducing the time and resources for the
finetuning. We finetuned the codec with Adam [25] optimizer
for 50 checkpoints in each experiments, evaluated the task
performance every 10 checkpoints, and evaluated all other
metrics on the checkpoint with the highest task score in Ta-
ble 1. Using a batch size of 4, the finetuning process took ≈
7 hours per settings on an NVIDIA A100 GPU.

Table 1. Evaluation results of PatchGAN finetuning config-
urations on different metrics. ↑ denotes the higher the better
and ↓ denotes the lower the better. The average bitrate of
outputs is 0.057 bits per pixel. Configuration with low adver-
sarial impact settings are marked with “LI”
Configuration mAP↑ PSNR↑ SSIM↑ VGG↓
Base codec 0.766 27.695 0.709 0.495

3 patches (64x64) 0.752 28.526 0.764 0.497
3 patches (32x32) 0.750 28.316 0.740 0.537
5 patches (64x64) 0.749 28.540 0.765 0.499
1 patch (64x64) 0.748 28.518 0.763 0.502
3 patches (128x128) 0.754 28.498 0.763 0.502
3 patches (128x128), LI 0.766 28.129 0.726 0.469

4.2. Experimental results

Table 1 summarises the best task performing checkpoints of
the configurations. Overall, all of the configurations can con-
siderably increase PSNR and SSIM scores, which are the met-
rics that are closely correlated to human perception. The mi-
nor differences between the lower rows indicate the robust-
ness of the method. Patch size of 32 × 32 shows less ap-
pealing results than other sizes in all metrics, possibly due to
limited context exposure that hinders the finetuning process.
Marginal task performance losses are observed when apply-
ing the proposed finetuning in most cases. Therefore, we car-
ried out experiments where the parameter updates due to the
adversarial training were greatly attenuated, specifically by
reducing λa to 1×10−4 and the learning rate to 2×10−9. The
result shown on the last row of Table 1 proves that the visual
metrics can be improved by the proposed technique without
losing task performance.

Fig. 2 shows the close-ups of a few output examples of
the compared codecs. We chose the outputs of 2 configura-

https://storage.googleapis.com/openimages/web/evaluation.html
https://storage.googleapis.com/openimages/web/evaluation.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html


Base codec Finetuned codec Limitedly finetuned codec (LI)

Fig. 2. The codec finetuned with PatchGAN (middle) effectively removes the checkerboard artifacts commonly found in the
decoded images of the NN-based convolutional codec such as the base model (left), while the codec finetuned with limited ad-
versarial impact (right) only mildly suppresses the artifacts. More examples available at: https://flysofast.github.
io/human-finetuned-icm/.

tions that resulted in the closest task performance scores to
the base codec for the visual comparison. The outputs of the
base codec show the typical repetitive patterns found in de-
coded images of ICM codecs. After being finetuned, the arti-
facts are almost completely removed, while the image content
is well-preserved without any clear random hallucinations.
The codec that was finetuned with an attenuated adversarial-
training could not completely remove the checkerboard pat-
terns, however managed to prevent the task performance loss
while improving the scores of visual metrics.

5. CONCLUSIONS

In this paper, we propose a novel codec finetuning scheme
that can effectively eliminate the well-known “checkerboard”

pattern produced by deep CNN autoencoders for ICM codecs.
Our experimental results demonstrate that the artifacts can be
sufficiently removed from the outputs of an ICM codec, thus
greatly enhance the visual quality and reconstruction fidelity
without any additional components or bitcost. Although the
machine task accuracy may be affected by this process, the
relative performance loss of −1.6% is negligible in consid-
ered cases. Furthermore, our study shows that the task perfor-
mance loss could be totally avoided by confining the impact
of the adversarial dynamics. In this settings, all of the bench-
marked metrics are improved, suggesting more desirable re-
sults could be achieved with granularity in training setup. We
also found that only a small subset of the codec parameters is
responsible for the artifacts, future study on this subject could
lead to interesting findings in neural networks explainability.

https://flysofast.github.io/human-finetuned-icm/.
https://flysofast.github.io/human-finetuned-icm/.
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