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ABSTRACT

AI-created face-swap videos, commonly known as Deep-
fakes, have attracted wide attention as powerful imperson-
ation attacks. Existing research on Deepfakes mostly fo-
cuses on binary detection to distinguish between real and
fake videos. However, it is also important to determine the
specific generation model for a fake video, which can help
attribute it to the source for forensic investigation. In this pa-
per, we fill this gap by studying the model attribution problem
of Deepfake videos. We first introduce a new dataset with
DeepFakes from Different Models (DFDM) based on several
Autoencoder models. Specifically, five generation models
with variations in encoder, decoder, intermediate layer, input
resolution, and compression ratio have been used to generate
a total of 6, 450 Deepfake videos based on the same input.
Then we take Deepfakes model attribution as a multiclass
classification task and propose a spatial and temporal atten-
tion based method to explore the differences among Deep-
fakes in the new dataset. Experimental evaluation shows that
most existing Deepfakes detection methods failed in Deep-
fakes model attribution, while the proposed method achieved
over 70% accuracy on the high-quality DFDM dataset1.

Index Terms— Face-swap Deepfakes, Model Attribu-
tion, Deepfakes Generation

1. INTRODUCTION
The term Deepfake, a portmanteau of ‘deep learning’ and
‘fake’, is often used to refer to the AI-synthesized face-swap
videos, in which the faces of the original subject (the ‘source’)
are replaced with those of the other person (the ‘target’) gen-
erated using deep learning models with the same facial ex-
pressions of the source. Since the nascence of the first Deep-
fakes in late 2017, they have become increasingly easier to
produce thanks to the availability of open-source generation
tools. Deepfakes with manipulated identities have raised wide
concerns [1], especially when they are weaponized by mali-
cious actors to target individuals or spread disinformation [2].

Accordingly, we have seen a growing research interest in
Deepfake detection methods in recent years. The DeepFake
detection methods exploit visual/signal artifacts [3, 4, 5, 6]

1The DFDM dataset and codes are available from https://github.
com/shanface33/Deepfake_Model_Attribution

Fig. 1. Different from existing detection methods to distinguish
between real and fake videos, Deepfake model attribution aims to
identify the generation model of a particular DeepFake video, which
may be used to further trace its author and source.

and/or employ novel deep neural networks [7, 8, 9, 10].
Correspondingly, many datasets of Deepfake videos have
been created in the past few years, notable examples in-
cluding Faceforensics++ [11], Celeb-DF [12], DFDC [13],
Deeperforensics-1.0 [14], and WildDeepfake [15].

Although the state-of-the-art Deepfake detection methods
have demonstrated encouraging performance on benchmark
datasets, the specific means by which the DeepFakes were
created are also important for forensic analysis (see Fig. 1).
For instance, knowing that the synthesis model is a copy of a
publicly available tool can narrow down the list of users who
have downloaded it. To this end, we need a general and flex-
ible method for Deepfake generation model attribution to de-
termine which synthesis model was used to create the Deep-
fake video.

The model attribution problem has been considered in re-
cent studies [16, 17, 18] in the case of Generative Adversarial
Network (GAN)-based models. However, the model attribu-
tion method designed for GAN images cannot be extended to
face-swap Deepfakes videos. The latter is more challenging
because the Autoencoder based models to create most Deep-
fakes [19] will attenuate high-frequency features in the gen-
erated video frames, on which the previous methods for GAN
model attribution predicate.

In this work, we provide a new method for the Deep-
fakes model attribution. As the majority of face-swap videos
are created with tools (i.e., [20, 21]] based on the autoen-
coder models [19], which have higher quality in video than
swaps generated with GAN-based models and require much
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Fig. 2. Examples of Deepfakes generated by different models in our
DFDM dataset. Visible but subtle visual differences can be observed
in face regions. Best view when zoom in.

less fine-tuning [19], we focus on such models in this work.
We address two questions: 1) do different generation mod-
els result in visually similar but statistically distinguishable
Deepfake videos? and 2) since several open-source genera-
tion models have been widely used to create Deepfake videos,
are the differences among variations of the same generation
model consistent and detectable from the input video?

To answer these questions, we first construct a new dataset
as DeepFakes generated from Different Models (DFDM).
Specifically, based on the most popular off-the-shelf software,
Facewap [20],we have created five categories of balanced
Deepfake videos using Autoencoder models with variations
in the encoder, decoder, intermediate layer, and input reso-
lution. For the second question, we formulate the face-swap
Deepfakes model attribution as a multi-classification problem
and design a novel Deepfakes model attribution method by
extracting subtle and discriminative features based on spatial
and temporal attention.

The main contributions of our work can be summarized
as follows. 1) We aim to tackle the problem of fine-grained
model attribution for face-swap Deepfake videos. To the best
of our knowledge, this is the first method to solve this prob-
lem. 2) We provide a new dataset DFDM that highlights sub-
tle visual differences caused by different Deepfakes genera-
tion models and indistinguishable to human eyes (see Fig.2).
3) A simple and effective Deepfakes model attribution method
based on spatial and temporal attention, named DMA-STA,
is designed and evaluated on the DFDM dataset, achieving
over 70% accuracy in identifying the high-quality Deepfakes.

2. RELATED WORK

Model attribution. Model attribution aims to identify the
specific model behind a synthetic image or video [18]. With
an increasing number of GAN models introduced in image
manipulation, several studies [16, 22, 17, 18, 23] have investi-
gated GAN model attribution in fake images. These methods
propose to extract unique artificial fingerprints left by differ-
ent GAN models and perform multi-class classification for
GAN model attribution. However, as far as we know, there
is no previous work on Deepfakes model attribution method
that works for face-swap videos. Although GAN models
can be used for Deepfakes generation, they seem to work

Table 1. Comparison of various Deepfake datasets
Dataset #Deepfakes #Sub #Models Model label?

UADFV [4] 49 49 1 -
Deepfake-TIMIT [27] 640 43 1 -
FaceForensics++ [11] 3,000 977 1 -
DFDC Preview [13] 5,244 66 2 No

DeepfakeDetection [28] 3,068 28 - No
Celeb-DF [12] 5,639 59 1 -

DeeperForensics-1.0 [14] 10,000 100 1 -
DFDC [19] 104,500 960 6 No

WildDeepfake [15] 3,509 - - No
DFDM (ours) 6,450 59 5 Yes

well in limited settings with even lighting conditions [19].
Consequently, most publicly available face-swap Deepfakes
were created with Deepfake Autoencoder (DFAE) methods.
Will variant DFAE models differentiate Deepfakes attribu-
tion? Will image-based GAN model attribution also work for
DFAE with videos? Answering these questions is valuable
for research on Deepfake model attribution.
Deepfakes detection. Research on Deepfake detection in-
volves both data generation and method design. There have
been several publicly available datasets with both real video
and Deepfakes proposed for binary detection. Most of them
created face-swap Deepfakes with one manipulation model,
or provided imbalanced Deepfakes without model annota-
tions (as shown in Table 1). Based on these datasets, many
Deepfake detection methods have been developed. One
popular category explores various artifacts, including head
poses [4], emotion perception [5] etc., and signal-level ar-
tifacts in visual cues [3, 5, 6], and frequency domain [24],
etc. Another category employs deep neural networks, such as
Capsule network [8], ensemble of CNNs [25], and attention
schemes [26]. For Deepfake model attribution, artifacts-based
detection methods may fail due to the fact that the artifacts to
distinguish Deepfakes from real videos exist in all Deepfakes
from different models. In this paper, we will design a deep
neural network-based method to learn subtle differences in
Deepfake model attribution, and also evaluate how Deepfake
detection methods will perform in model attribution task.

3. METHOD
3.1. The DFDM dataset
As there are no existing datasets with labeled Deepfakes gen-
erated from various models, we create a new DFDM dataset
for Deepfakes model attribution. Considering that most pub-
lic Deepfakes were produced based on Autoencoder archi-
tectures [19, 15], we focus on Autoencoder models for high-
quality Deepfakes generation.

We use the most popular open-source software Facewap
[20] with several optional DFAE models, including the origi-
nal model (Faceswap) created by the reddit user, and models
from DeepFaceLab [21]. As the first attempt in Deepfake
video model attribution, we elaborately selected five models
based on the following criteria: use the original Faceswap
model as the baseline to select models with only one variation



Fig. 3. Framework of the proposed DMA-STA method. Two major components are included: 1) Feature extraction from multiple single
frames based on SAM (Spatial Attention Map); 2) Video-level fusion module based on TAM (Temporal Attention Map).

Table 2. Structures of Deepfakes generation models used in
the proposed DFDM dataset

Model Input Output Encoder Decoder Variation
Faceswap
(baseline) 64 64 4Conv+1Ups 3Ups+1Conv /

Lightweight 64 64 3Conv+1Ups 3Ups+1Conv Encoder

IAE 64 64 4Conv 4Ups+1Conv
Intermediate

layers; Shared
Encoder&Decoder

Dfaker 64 128 4Conv+1Ups
4Ups+3Resi-
dual+1Conv Decoder

DFL-H128 128 128 4Conv+1Ups 3Ups+1Conv Input resolution
‘Conv’ - convolution layer, and ‘Ups’ - upscaling function.

(in encoder, decoder, intermediate layer, and input resolution,
respectively) for the most subtle model attribution. Table 2
shows the details of the five models, including Faceswap [20],
Lightweight [20], IAE [20], Dfaker [29], and DFL-H128 [30].
Note that other models provided by Facewap have over one
variation with each other, which we believe are easier to iden-
tify than the five models we selected here.

To generate videos with high diversity, we chose the real
videos in Celeb-DF dataset [12], which contains 590 YouTube
interviews of 59 celebrities. We used the S3FD detector [31]
and FAN face aligner [32] for face extraction, trained each
model with 100,000 iterations, and generated the final Deep-
fakes after face convert in MPEG4.0 format. Three H.264
compression rates are considered to get videos with differ-
ent qualities, including lossless with the constant rate factor
(crf) as 0, high quality with crf as 10, and low quality with
crf as 23. Totally, 6,450 Deepfakes have been created in the
DFDM dataset. Fig. 2 shows the face examples in Deepfakes
from five models based on the same training data. The visual
differences in face regions demonstrate evidence of model at-
tribution artifacts.

3.2. The DMA-STA method
To explore if the observed artifacts among different Deep-
fakes are consistent and detectable, we design a model attri-
bution method (named DMA-STA) by fusing spatial (frame-
level) and temporal (video-level) attention schemes for dis-
criminative feature extraction.
Frame-level feature extraction. We first extract frame-
level features from N cropped faces {Xi, i ∈ [1, N ]}. As

shown in Fig.3, a CNN model is employed to automatically
extract high-level representations

{
Yi ∈ RH×W×C

}
from

each face Xi. Next, the 2D Spatial Attention Map (SAM){
Ms(Yi) ∈ RH×W×1

}
is obtained using the lightweight and

flexible convolutional block attention module proposed by
[33]. Specifically, the SAM is computed as:

Ms(Yi) = σ(f7×7([AvgPool(Yi)]; [MaxPool(Yi)])) (1)

where σ denotes the sigmoid function to obtain probabilities
to weigh the feature maps, f7×7 is a convolution opera-
tion with the filter size of 7 × 7, AvgPool and MaxPool
represent the average pooling and max pooling respectively
to highlight the information regions, and ‘;’ means feature
concatenation. Based on the SAM, the adaptive features{

Ysa i ∈ RH×W×C
}

are obtained by,

Ysa i = Ms(Yi)⊗Yi (2)

where ⊗ represents the element-wise multiplication. Note
that the SAM can be integrated into each subblock in CNN,
such as the ResBlock in ResNet. To aggregate the frame
features, extracted features Ysa i are finally fed into the
average pooling layer, outputting the final frame features{

Fsa i ∈ R1×1×C
}

.
Video-level fusion. Previous studies on video-level Deep-
fakes detection mostly fused multi-frame features based on
averaging the network predictions (score fusion) [3, 7, 8, 27,
34]. To improve the classification performance, we introduce
the temporal attention map (TAM) to adaptively aggregate the
features from different frames. The frame features Fsa i from
N faces are first concatenated to get the multi-frame represen-
tations

{
Fsa ∈ RN×1×C

}
, which are fused to get the adaptive

representation
{

Fsa ta ∈ RN×1×C
}

, computed as,

Fsa ta = Mt(Fsa)⊗ Fsa (3)

where
{

Mt(Fsa) ∈ RN×1×1
}

is the temporal attention map,
using the similar structure to SENet [35],

Mt(Fsa) = σf2(δf1[AvgPool(Fsa)]) (4)
where δ is the ReLU function, and f1 and f2 are two fully con-
nected layers. Let the elements in the j channel of Fsa ta and
Mt(Fsa) as fi,j and mi, respectively; then the final represen-
tation

{
F ∈ R1×1×C

}
is formulated as Equation (5), which

is finally fed into the fully connected layer for classification



(outputting the class probabilities for M category of Deep-
fakes).

Fj =

∑N
i=1 fi,j∑N
i=1mi

(j ∈ [1, C]) (5)

The cross-entropy loss is used to train the network. Dif-
ferent from existing Deepfake detection methods, we design
the attention mechanism in both frame and video level for
subtle difference extraction in model attribution. When com-
pared to previous fingerprint based GAN model attribution
studies, the DMA-STA method directly takes the whole faces
as input instead of designing auxiliary artifacts for the multi-
classification based task, so that the differences among differ-
ent Deepfakes can be learned effectively and automatically.

4. EXPERIMENTS

4.1. Experimental Settings
We use the ResNet-50 [36] as the CNN feature extractor in
DMA-STA.The videos in DFDM are randomly split into a
training set (70%) and a testing set (30%). To balance the
distribution of faces in frame selection, we selected 10 frames
of each video by periodic sampling for the proposed video-
level attribution scheme. Consequently, the network takes the
cropped faces in 224 × 224 × 3 × 10 as input. To train the
network, the optimizer is set to SDG with the weight decay of
5 × 10−4, and momentum equal to 0.9. The initial learning
rate of 0.01 is divided by 10 every 40 epochs to 0.0001. A
batch size of 10 is used for training with 300 epochs.

Several existing classification methods with open-source
codes are re-trained and evaluated on the DFDM dataset, in-
cluding CNN based detection methods [7, 8, 11, 9], artifacts
based detection [3, 24]; and GAN image model attribution
methods [23, 22]. Classification accuracy is used as the evalu-
ation metric. Note that for a fair comparison, we implemented
all these methods in video-level fusion using the same frame
number (10) as the proposed DMA-STA.

4.2. Comparison with existing methods
Attention schemes. Table 3 compares our method with dif-
ferent attention schemes on the high-quality videos in DFDM.
Our proposed DMA-STA achieves the best overall accuracy
of 71.94%. Further, we can observe that these methods show
better performance in identifying Deepfakes generated by
models with decoder variations, i.e., Dfaker, and DFL-H128.

Table 3. Comparison of different attention schemes (%)
Attention FS LW IAE Dfaker DFL Overall

ResNet-50 [36] 54.84 57.36 70.54 89.92 70.54 68.02
CBAM [33] 52.42 63.57 69.77 84.50 74.42 68.53

SAM+FA [37] 64.34 42.64 76.61 74.42 79.07 66.82
SAM+Ave 58.87 51.16 76.74 80.62 79.07 68.84

Ours: DMA-STA 63.57 58.91 66.67 82.95 87.60 71.94
FS is shorted for the Faceswap model, LW is the Lightweight model, and DFL is the
DFL-H128 model.

Classification methods. We conducted comparison exper-
iments (all based on 10-frame feature fusion) to show how
Deepfake detection and GAN model attribution methods per-
form in identifying Deepfakes on the high-quality DFDM

Table 4. Comparison of different methods on DFDM (%)
Method FS LW IAE Dfaker DFL Overall

MesoInception [7] 6.98 2.33 79.07 79.07 4.65 20.93
Xception [11] 0.77 0 12.40 12.40 19.38 20.93

R3D [9] 27.13 25.58 15.5 20.16 18.61 21.40
DSP-FWA [3] 17.05 7.75 43.41 40.31 8.87 23.41

DFT-spectrum [24] 99.92 3.26 0.23 27.21 48.91 35.91
DnCNN [23] 2.33 0 0 7.75 99.22 21.86

GAN Fingerprint [22] 20.16 22.48 54.26 21.71 26.36 28.99
Capsule[8] 32.56 42.64 69.77 73.64 58.91 55.50

Ours: DMA-STA 63.57 58.91 66.67 82.95 87.60 71.94

Table 5. Comparison on different video qualities (%)
Train→Test FS LW IAE Dfaker DFL Overall
NoL→NoL 52.42 54.26 82.17 94.6 86.82 73.64
NoL→HQ 41.09 42.64 75.00 61.24 83.72 60.62
NoL→LQ 34.88 41.09 33.59 4.65 3.88 23.57
HQ→HQ 63.57 58.91 66.67 82.95 87.60 71.94
HQ→NoL 58.14 45.74 82.03 86.82 82.17 70.85
HQ→LQ 20.31 27.91 53.49 56.59 36.43 38.91
LQ→LQ 32.26 25.58 59.69 72.09 69.77 51.63
LQ→NoL 50.00 22.48 78.29 59.69 52.71 52.56
LQ→HQ 40.62 28.68 67.44 72.09 61.24 53.95
LQ denotes the low quality Deepfakes, HQ denotes the high quality Deepfakes, and
NoL denotes the Deepfakes encoded by H.264 with no losses.

dataset. Table 4 shows that most methods fail in identifying
Deepfakes, with an overall accuracy less than 25%, indicat-
ing the weak or inconsistent artifacts/noise patterns among
different Deepfakes. Benefiting from the rich representation
of the residual network and adaptive feature learning of atten-
tion mechanisms, our method achieves an overall accuracy of
71.94%, 16% higher than the Capsule network.

4.3. Comparison on different video qualities
Table 5 compares the model attribution performance of our
method under both intra- and cross-quality testing scenarios
on the DFDM. The video compression shows a significant
influence on the attribution results, with the overall accu-
racy ranging from 23.57% to 73.64%. Furthermore, it can
be observed that training on videos with lower qualities and
testing on videos with higher quality results in better perfor-
mance than vice versa, e.g., HQ→NoL with 70.85% overall
accuracy, comparable to HQ→HQ results with 71.94% (same
trends in LQ→NoL and LQ→ HQ cases).

5. CONCLUSIONS
In this work, we have made the first attempt to explore the
Deepfakes model attribution of different Autoencoder struc-
tures by creating a new dataset (DFDM) with Deepfakes from
five models and designing a model attribution method for
Deepfakes identification (DMA-STA). Although evaluation
results show that several state-of-the-art Deepfake detection
or GAN image attribution methods failed in identifying Deep-
fake videos, the proposed method based on both spatial and
temporal attention achieves over 70% accuracy on higher-
quality Deepfakes identification. Our future work includes
adding more Deepfakes generation models and enhancing the
robustness of the method to video compression.
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