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ABSTRACT

Video prediction is an important yet challenging problem; burdened with the tasks
of generating future frames and learning environment dynamics. Recently, autore-
gressive latent video models have proved to be a powerful video prediction tool,
by separating the video prediction into two sub-problems: pre-training an im-
age generator model, followed by learning an autoregressive prediction model in
the latent space of the image generator. However, successfully generating high-
fidelity and high-resolution videos has yet to be seen. In this work, we investigate
how to train an autoregressive latent video prediction model capable of predicting
high-fidelity future frames with minimal modification to existing models, and pro-
duce high-resolution (256x256) videos. Specifically, we scale up prior models by
employing a high-fidelity image generator (VQ-GAN) with a causal transformer
model, and introduce additional techniques of top-k sampling and data augmen-
tation to further improve video prediction quality. Despite the simplicity, the pro-
posed method achieves competitive performance to state-of-the-art approaches on
standard video prediction benchmarks with fewer parameters, and enables high-
resolution video prediction on complex and large-scale datasets. Videos are avail-
able at https://sites.google.com/view/harp-videos/home*.

1 INTRODUCTION
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Figure 1: Selcted 256× 256 video sample generated by HARP on RoboNet (Dasari et al., 2019).

Video prediction can enable agents to learn useful representations for predicting the future conse-
quences of the decisions they make, which is crucial for solving the tasks that require long-term
planning, including robotic manipulation (Finn & Levine, 2017; Kalashnikov et al., 2018) and au-
tonomous driving (Xu et al., 2017). Despite the recent advances in improving the quality of video
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prediction (Finn et al., 2016; Babaeizadeh et al., 2018; Denton & Fergus, 2018; Lee et al., 2018;
Weissenborn et al., 2020; Babaeizadeh et al., 2021), learning an accurate video prediction model
remains notoriously difficult problem and requires a lot of computing resources, especially when
the inputs are video sequences with high-resolution (Villegas et al., 2019; Clark et al., 2019; Luc
et al., 2020). This is because the video prediction model should excel at both tasks of generating
high-fidelity images and learning the dynamics of environments, though each task itself is already a
very challenging problem.

Recently, autoregressive latent video prediction methods (Rakhimov et al., 2021; Yan et al., 2021;
2022) have been proposed to improve the efficiency of video prediction, by separating video predic-
tion into two sub-problems: first pre-training an image generator (e.g., VQ-VAE; Oord et al. 2017),
and then learning the autoregressive prediction model (Weissenborn et al., 2020; Chen et al., 2020)
in the latent space of the pre-trained image generator. However, the prior works are limited in that
they only consider relatively low-resolution videos (up to 128 × 128 pixels) for demonstrating the
efficiency of the approach; it is questionable that such experiments can fully demonstrate the benefit
of operating in the latent space of image generator instead of pixel-channel space.

In this paper, we present High-fidelity AutoRegressive latent video Prediction (HARP), which scales
up the previous autoregressive latent video prediction methods for high-fidelity video prediction.
The main principle for the design of HARP is simplicity: we improve the video prediction quality
with minimal modification to existing methods. First, for image generation, we employ a high-
fidelity image generator, i.e., vector-quantized generative adversarial network (VQ-GAN; Esser et al.
2021). This improves video prediction by enabling high-fidelity image generation (up to 256× 256
pixels) on various video datasets. Then a causal transformer model (Chen et al., 2020), which
operates on top of discrete latent codes, is trained to predict the discrete codes from VQ-GAN,
and autoregressive predictions made by the transformer model are decoded into future frames at
inference time.

We highlight the main contributions of this paper below:

• We show that our autoregressive latent video prediction model, HARP, can predict high-
resolution (256×256 pixels) frames on robotics dataset (i.e., Meta-World (Yu et al., 2020))
and large-scale real-world robotics dataset (i.e., RoboNet (Dasari et al., 2019)).
• We show that HARP can leverage the image generator pre-trained on ImageNet for train-

ing a high-resolution video prediction model on complex, large-scale Kinetics-600 dataset
(Carreira et al., 2018).

• HARP achieves competitive or superior performance to prior state-of-the-art video predic-
tion models on widely-used BAIR Robot Pushing (Ebert et al., 2017) and KITTI driving
(Geiger et al., 2013) video prediction benchmarks.

2 RELATED WORK

Video prediction. Video prediction aims to predict the future frames conditioned on images
(Michalski et al., 2014; Ranzato et al., 2014; Srivastava et al., 2015; Vondrick et al., 2016; Lotter
et al., 2017), texts (Wu et al., 2021b), and actions (Oh et al., 2015; Finn et al., 2016), which would be
useful for several applications, e.g., model-based RL (Hafner et al., 2019; Kaiser et al., 2020; Hafner
et al., 2021; Rybkin et al., 2021; Seo et al., 2022a;b), and simulator development (Kim et al., 2020;
2021). Various video prediction models have been proposed with different approaches, including
generative adversarial networks (GANs; Goodfellow et al. 2014) known to generate high-fidelity
images by introducing adversarial discriminators that also considers temporal or motion informa-
tion (Aigner & Körner, 2018; Jang et al., 2018; Kwon & Park, 2019; Clark et al., 2019; Luc et al.,
2020; Skorokhodov et al., 2022; Yu et al., 2022), latent video prediction models that operates on
the latent space (Babaeizadeh et al., 2018; Denton & Fergus, 2018; Lee et al., 2018; Villegas et al.,
2019; Wu et al., 2021a; Babaeizadeh et al., 2021), and autoregressive video prediction models that
operates on pixel space by predicting the next pixels in an autoregressive way (Kalchbrenner et al.,
2017; Reed et al., 2017; Weissenborn et al., 2020).
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Figure 2: Illustration of our approach. We first train a VQ-GAN model that encodes frames into
discrete latent codes. Then the discrete codes are flattened following the raster scan order, and a
causal transformer model is trained to predict the next discrete codes in an autoregressive manner.

Autoregressive latent video prediction. Most closely related to our work are autoregressive la-
tent video prediction models that separate the video prediction problem into image generation and
dynamics learning. Walker et al. (2021) proposed to learn a hierarchical VQ-VAE (Razavi et al.,
2019) that extracts multi-scale hierarchical latents then train SNAIL blocks (Chen et al., 2018) that
predict hierarchical latent codes, enabling high-fidelity video prediction. However, this involves
a complicated training pipeline and a video-specific architecture, which limits its applicability. As
simple alternatives, Rakhimov et al. (2021); Yan et al. (2021; 2022) proposed to first learn a VQ-VAE
(Oord et al., 2017) and train a causal transformer with 3D self-attention (Weissenborn et al., 2020)
and factorized 2D self-attention (Child et al., 2019), respectively. These approaches, however, are
limited in that they only consider low-resolution videos. We instead present a simple high-resolution
video prediction method that incorporates the strengths of both prior approaches.

3 PRELIMINARIES

We aim to learn a video prediction model that predicts the future frames xc:T = (xc, ...,xT−1)
conditioned on the first c frames of a video x<c = (x0,x1, ...,xc−1), where xt ∈ RH×W×Nch

is the frame at timestep t. Optionally, one can also consider conditioning the prediction model on
actions a = (a0, ...,aT−1) that the agents would take.

3.1 AUTOREGRESSIVE VIDEO PREDICTION MODEL

Autoregressive video prediction model (Weissenborn et al., 2020) approximates the distribution of
a video in a pixel-channel space. Given a video x ∈ RT×H×W×Nch , the joint distribution over
pixels conditioned on the first c frames is modelled as the product of channel intensities Nch and all
Np = T ·H ·W pixels except Nc = c ·H ·W pixels of conditioning frames:

p(xc:T |x<c) =
Np−1∏
i=Nc−1

Nch−1∏
k=0

p(xkπ(i)|xπ(<i),x
<k
π(i)), (1)

where π is a raster-scan ordering over all pixels from the video (we refer to Weissenborn et al. (2020)
for more details), xπ(<i) is all pixels before xπ(i), xkπ(i) is k-th channel intensity of the pixel xπ(i),
and x<kπ(i) is all channel intensities before xkπ(i).

3.2 VECTOR QUANTIZED VARIATIONAL AUTOENCODER

VQ-VAE (Oord et al., 2017) consists of an encoder that compresses images into discrete representa-
tions, and a decoder that reconstructs images from these discrete representations. Formally, given an
image x ∈ RH×W×Nch , the encoder E encodes x into a feature map ze(x) ∈ RH′×W ′×Nz consist-
ing of a series of latent vectors zπ′(i)(x) ∈ RNz , where π′ is a raster-scan ordering of the feature map
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ze(x) of size |π′| = H ′ ·W ′. Then ze(x) is quantized to discrete representations zq(x) ∈ R|π′|×Nz

based on the distance of latent vectors zπ′(i)(x) to the prototype vectors in a codebookC = {ek}Kk=1
as follows:

zq(x) = (eq(x,1), eq(x,2), · · · , eq(x,|π′|)),

where q(x, i) = argmink∈[K]‖zπ′(i)(x)− ek‖2, (2)

where [K] is the set {1, · · · ,K}. Then the decoder G learns to reconstruct x from discrete repre-
sentations zq(x). The VQ-VAE is trained by minimizing the following objective:

LVQVAE(x) = ‖x−G(zq(x))‖22︸ ︷︷ ︸
Lrecon

+ ‖sg [ze(x)]− zq(x)‖22︸ ︷︷ ︸
Lcodebook

+β · ‖sg [zq(x)]− ze(x)‖22︸ ︷︷ ︸
Lcommit

, (3)

where the operator sg refers to a stop-gradient operator, Lrecon is a reconstruction loss for learning
representations useful for reconstructing images, Lcodebook is a codebook loss to bring codebook rep-
resentations closer to corresponding encoder outputs h, and Lcommit is a commitment loss weighted
by β to prevent encoder outputs from fluctuating frequently between different representations.

3.3 VECTOR QUANTIZED GENERATIVE ADVERSARIAL NETWORK

VQ-GAN (Esser et al., 2021) is a variant of VQ-VAE that (a) replaces the Lrecon in (3) by a per-
ceptual loss LLPIPS (Zhang et al., 2018), and (b) introduces an adversarial training scheme where a
patch-level discriminator D (Isola et al., 2017) is trained to discriminate real and generated images
by maximizing following loss:

LGAN(x) = [logD(x) + log(1−D(G(zq(x)))]. (4)

Then, the objective is given as below:

min
E,G,C

max
D

Ex∼p(x)
[(
LLPIPS + Lcodebook + Lcommit

)
+ λ · LGAN

]
, (5)

where λ =
∇GL

[LLPIPS]

∇GL
[LGAN]+δ

is an adaptive weight, ∇GL
is the gradient of the inputs to the last layer of

the decoder GL, and δ = 10−6 is a scalar introduced for numerical stability.

4 METHOD

We present HARP, a video prediction model capable of predicting high-fidelity future frames. Our
method is designed to fully exploit the benefit of autoregressive latent video prediction model that
separates the video prediction into image generation and dynamics learning. The full architecture of
HARP is illustrated in Figure 2.

4.1 HIGH-FIDELITY IMAGE GENERATOR

We utilize the VQ-GAN model (Esser et al., 2021) that has proven to be effective for high-resolution
image generation as our image generator (see Section 3 for the formulation of VQ-GAN). Specifi-
cally, we first pre-train the image generator then freeze the model throughout training to improve the
efficiency of learning video prediction models. The notable difference to a prior work that utilize 3D
convolutions to temporally downsample the video for efficiency (Yan et al., 2021) is that our image
generator operates on single images; hence our image generator solely focus on improving the qual-
ity of generated images. Importantly, this enables us to utilize the VQ-GAN model pre-trained on
a wide range of natural images, e.g., ImageNet, without training the image generator on the target
datasets, which can significantly reduce the training cost of high-resolution video prediction model.

4.2 AUTOREGRESSIVE LATENT VIDEO PREDICTION MODEL

To leverage the VQ-GAN model for video prediction, we utilize the autoregressive latent video
prediction architecture that operates on top of the discrete codes. Specifically, we extract the
discrete codes z(x) = (z(x1), ..., z(xT )) using the pre-trained VQ-GAN, where z(xt) =

4



(a) RoboNet (b) Kinetics-600
Figure 3: 256× 256 future frames predicted by HARP trained on (a) RoboNet (Dasari et al., 2019)
and (b) Kinetics-600 (Carreira et al., 2018) datasets.

(q(xt,1), q(xt,2), ..., q(xt,|π′|)) is the discrete code extracted from the frame xt as in (2). Then, in-
stead of modelling the distribution of video p(x) in the pixel-channel space as in (1), we learn the
distribution of the video in the discrete latent representation space:

p(z(xc:T |x<c)) =
Nd−1∏
i=0

p(zπ′(i)(x)|zπ′(<i)(x)), (6)

where Nd = (T − C) · H ′ ·W ′ is the total number of codes from xc:T . Due to its simplicity, we
utilize the causal transformer architecture (Yan et al., 2021) where the output logits from input codes
are trained to predict the next discrete codes.

4.3 ADDITIONAL TECHNIQUES

Top-k sampling. To improve the video prediction quality of latent autoregressive models whose
outputs are sampled from the probability distribution over a large number of discrete codes, we uti-
lize the top-k sampling (Fan et al., 2018) that randomly samples the output from the top-k probable
discrete codes. By preventing the model from sampling rare discrete codes from the long-tail of
a probability distribution and predicting future frames conditioned on such discrete codes, we find
that top-k sampling improves video prediction quality, especially given that the number of discrete
encodings required for future prediction is very large, e.g., 2,560 on RoboNet (Dasari et al., 2019)
up to 6,400 on KITTI dataset (Geiger et al., 2013) in our experimental setup.

Data augmentation. We also investigate how data augmentation can be useful for improving the
performance of autoregressive latent video prediction models. Since the image generator model is
not trained with augmentation, we utilize a weak augmentation to avoid the instability coming from
aggressive transformation of input frames, i.e., translation augmentation that moves the input images
by m pixels along the X or Y direction.

5 EXPERIMENTS

We design our experiments to investigate the following:

• Can HARP predict high-resolution future frames (up to 256× 256 pixels) on various video
datasets with different characteristics?

• How does HARP compare to state-of-the-art methods with large end-to-end networks on
standard video prediction benchmarks in terms of quantitative evaluation?

• How does the proposed techniques affect the performance of HARP?
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Table 1: Quantitative evaluation on (a) BAIR Robot Pushing (Ebert et al., 2017) and (b) KITTI
driving dataset (Geiger et al., 2013). We observe that HARP can achieve competitive performance
to state-of-the-art methods with large end-to-end networks on these benchmarks.

(a) BAIR Robot Pushing

Methodb Params FVD (↓)

LVT 50M 125.8
SAVP 53M 116.4
DVD-GAN-FP —† 109.8
VideoGPT 82M 103.3
TrIVD-GAN-FP —† 103.3
Video Transformer 373M 94.0
FitVid 302M 93.6

HARP (ours) 89M 99.3

(b) KITTI

Method4 Params FVD (↓) LPIPS (↓)

SVG 298M 1217.3 0.327
GHVAE 599M 552.9 0.286
FitVid 302M 884.5 0.217

HARP (ours) 89M 482.9 0.191
† Not available

5.1 HIGH-RESOLUTION VIDEO PREDICTION

Implementation. We utilize up to 8 Nvidia 2080Ti GPU and 20 CPU cores for training each
model. For training VQ-GAN (Esser et al., 2021), we first train the model without a discriminator
lossLGAN, and then continue the training with the loss following the suggestion of the authors. For all
experiments, VQ-GAN downsamples each frame into 16× 16 latent codes, i.e., by a factor of 4 for
frames of size 64×64 frames, and 16 for frames of size 256×256. For training a transformer model,
the VQ-GAN model is frozen so that its parameters are not updated. We use Sparse Transformers
(Child et al., 2019) as our transformer architecture to accelerate the training. For hyperparameterse,
we use k = 10 for sampling at inference time.

Setup. For all experiments, VQ-GAN downsamples each frame into 16 × 16 latent codes, i.e.,
by a factor of 4 for frames of size 64 × 64 frames, and 16 for frames of size 256 × 256. For
training a transformer model, the VQ-GAN model is frozen so that its parameters are not updated.
As for hyperparameter, we use k = 10 for sampling at inference time, but no data augmentation
for high-resolution video prediction experiments. We investigate how our model works on large-
scale real-world RoboNet dataset (Dasari et al., 2019) consisting of more than 15 million frames,
and Kinetics-600 dataset consisting of more than 400,000 videos, which require a large amount
of computing resources for training even on 64 × 64 resolution (Babaeizadeh et al., 2021; Clark
et al., 2019). For RoboNet experiments, we first train a VQ-GAN model, and then train a 12-
layer causal transformer model that predicts future 10 frames conditioned on first two frames and
future ten actions. For Kinetics-600 dataset, to avoid the prohibitively expensive training cost of
high-resolution video prediction models on this dataset and fully exploit the benefit of employing
a high-fidelity image generator, we utilize the ImageNet pre-trained VQ-GAN model. As we train
the transformer model only for autoregressive prediction, this enables us to train a video prediction
model in a very efficient manner.

Results. First, we provide the predicted frames on the held-out test video of RoboNet dataset in
Figure 3a, where the model predicts the high-resolution future frames where a robot arm is moving
around various objects of different colors and shapes. Furthermore, Figure 3b shows that Kinetics-
600 pre-trained model can also predict future frames on the test natural videosc, which demonstrates
that leveraging the large image generator pre-trained on a wide range of natural images can be a
promising recipe for efficient video prediction on large-scale video datasets.

bBaselines are SVG (Villegas et al., 2019), GHVAE (Wu et al., 2021a), FitVid (Babaeizadeh et al., 2021),
LVT (Rakhimov et al., 2021), SAVP (Lee et al., 2018), DVD-GAN-FP (Clark et al., 2019), VideoGPT (Yan
et al., 2021), TrIVD-GAN-FP (Luc et al., 2020), and Video Transformer (Weissenborn et al., 2020).

cVideos with CC-BY license: Figure 3b top and bottom
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Table 2: FVD scores of HARP with varying (a) the number of codes to use for top-k sampling, (b)
number of layers, and (c) magnitude m of data augmentation.

(a) Effects of k

Dataset k FVD (↓)

BAIR
No top-k 104.4

100 103.6
10 99.3

KITTI
No top-k 578.1

100 557.7
10 482.9

(b) Effects of layers

Dataset Layers FVD (↓)

BAIR 6 111.8
12 99.3

KITTI 6 520.1
12 482.9

(c) Effects of m

Dataset m FVD (↓)

KITTI

0 980.1
2 497.0
4 482.9
8 523.4

5.2 COMPARATIVE EVALUATION ON STANDARD BENCHMARKS

Setup. For quantitative evaluation, we first consider the BAIR robot pushing dataset (Ebert et al.,
2017) consisting of roughly 40k training and 256 test videos. Following the setup in prior work (Yan
et al., 2021), we predict 15 future frames conditioned on one frame. We also evaluate our method on
KITTI driving dataset (Geiger et al., 2013), where the training and test datasets are split by following
the setup in Villegas et al. (2019). Specifically, the test dataset consists of 148 video clips constructed
by extracting 30-frame clips and skipping every 5 frames, and the model is trained to predict future
ten frames conditioned on five frames and evaluated to predict future 25 frames conditioned on five
frames. For hyperparameters, We use k = 10 for both datasets and data augmentation with m = 4 is
only applied to KITTI as there was no sign of overfitting on BAIR dataset. For evaluation metrics,
we use LPIPS (Zhang et al., 2018) and FVD (Unterthiner et al., 2018), computed using 100 future
videos for each ground-truth test video, then reports the best score over 100 videos for LPIPS, and
all videos for FVD, following Babaeizadeh et al. (2021); Villegas et al. (2019).

Results. Table 1 shows the performances of our method and baselines on test sets of BAIR Robot
Pushing and KITTI driving dataset. We observe that our model achieves competitive or superior
performance to state-of-the-art methods with large end-to-end networks, e.g., HARP outperforms
FitVid with 302M parameters on KITTI driving dataset. Our model successfully extrapolates to
unseen number of future frames (i.e., 25) instead of 10 future frames used in training on KITTI
dataset. This implies that transformer-based video prediction models can also predict arbitrary num-
ber of frames at inference time. In the case of BAIR dataset, HARP achieves the similar performance
of FitVid with 302M parameters, even though our method only requires 89M parameters.

Analysis. We investigate how the top-k sampling, number of layers, and magnitude m of data
augmentation affect the performance. Table 2a shows that smaller k leads to better performance,
implying that the proposed top-k sampling is effective for improving the performance by discarding
rare discrete codes that might degrade the prediction quality at inference time. As shown in Ta-
ble 2b, we observe that more layers leads to better performance on BAIR dataset, which implies our
model can be further improved by scaling up the networks. Finally, we find that (i) data augmenta-
tion on KITTI dataset is important for achieving strong performance, similar to the observation of
Babaeizadeh et al. (2021), and (ii) too aggressive augmentation leads to worse performance.

6 DISCUSSION

In this work, we present HARP that employs a high-fidelity image generator for predicting high-
resolution future frames, and achieves competitive performance to state-of-the-art video prediction
methods with large end-to-end networks. We also demonstrate that HARP can leverage the image
generator pre-trained on a wide range of natural images for video prediction, similar to the approach
in the context of video synthesis (Tian et al., 2021). We hope this work inspires more investigation
into leveraging recently developed pre-trained image generators (Oord et al., 2017; Chen et al., 2020;
Esser et al., 2021) for high-fidelity video prediction.
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(a) RoboNet (b) Kinetics-600

Figure 4: Failure cases in our experiments. (a) Interaction with the objects is ignored. (b) The model
repeats the first frame while a person is moving right in the ground-truth frames.

Finally, we report the failure cases of video prediction with HARP and discuss the possible ex-
tensions to resolve the issue. A common failure case for video prediction on RoboNet dataset is
ignoring the interaction between a robot arm and objects. For example, in Figure 4a, our model
ignores the objects and only predicts the movement of a robot arm. On the other hand, common
failure case for Kinetics-600 is a degenerate video prediction, where a model just repeats the con-
ditioning frame without predicting the future, as shown in Figure 4b. These failure cases might be
resolved by training more larger networks similar to the observation in the field of natural language
processing, e.g., GPT-3 (Brown et al., 2020), or might necessitate a new architecture for addressing
the complexity of training autoregressive latent prediction models on video datasets.
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