
UTILIZING EXCESS RESOURCES IN TRAINING NEURAL NETWORKS

Amit Henig and Raja Giryes

Electrical Engineering, Tel Aviv University

ABSTRACT

In this work, we suggest Kernel Filtering Linear Overpa-
rameterization (KFLO), where a linear cascade of filtering
layers is used during training to improve network perfor-
mance in test time. We implement this cascade in a kernel
filtering fashion, which prevents the trained architecture from
becoming unnecessarily deeper. This also allows using our
approach with almost any network architecture and let com-
bining the filtering layers into a single layer in test time.
Thus, our approach does not add computational complexity
during inference. We demonstrate the advantage of KFLO on
various network models and datasets in supervised learning.

Index Terms— linear overparameterization, structural
reparameterization, kernel filtering / composition

1. INTRODUCTION

Deep neural networks have shown remarkable capabilities in
computer vision and natural language processing. Research
on improving the deployed networks’ performance has been
done in many fields and different problem frameworks. In
this work, we focus on the common case where the deployed
model architecture is chosen in advance of training, and re-
sources are abundant during training relative to inference
time. These resources can be used to improve performance.
Specifically, we focus on using a larger network during train-
ing that generates a smaller one for inference.

One may treat this problem setting as a network compres-
sion or a knowledge transfer problem. A known strategy for
this task is Knowledge Distillation (KD). There, knowledge
is transferred from a pre-trained teacher network to a desired
student network using signals from the teacher. Interestingly,
the student can match or even outperform the teacher’s per-
formance while being notably less complex. KD was first
introduced by [1] for model compression and generalized by
Hinton et. al. [2]. Various KD extensions exist such as KD in
generations [3], ensemble of students teaching each other [4],
the teacher assistant [5], and many more.

A different approach suggests using structural reparame-
terization, term denoted by [6] for transforming one architec-
ture’s parameters to produce the parameters used by another
architecture. Specifically, in the context of this paper, a col-
lapsible overparameterization. Common networks are typi-

(a) Vanilla Filtering Layer (b) KFLO Filtering Layer

(c) LeNet-5 with KFLO

Fig. 1. A brief preview of our method. Layers containing
filtering weights are marked with a darker shade. (a) A com-
mon vanilla filtering layer. (b) Filtering layer with KFLO:
The kernel that filters the input signal is the result of a point-
wise convolution applied on a different filtering kernel. The
weights outside the input signal’s path can be discarded after
training, deploying only the Filtered Kernel. (c) LeNet-5 im-
plemented with KFLO, for 28x28 grayscale images of 10 pos-
sible classes. Here too, the weights outside the signal’s main
path can be discarded after training, resulting in the original
LeNet-5 architecture to be used at inference time.

cally overparameterized, yet numerous empirical results show
that even deeper and/or wider networks can achieve better
performance [7]. Recent works have suggested that this does
not always result from stronger computational capabilities of
the bigger network compared to the smaller one. The smaller
one, which can have enough expressive power to memorize
the dataset, is usually harder to train, that is, it is harder for the
smaller network to achieve a good generalization as the big-
ger network; however, with the right training it might [5, 8].
Structural re-parameterization methods can improve perfor-
mance by adding overparameterization to a desired architec-
ture, while dropping the excess weights after training, so the
deployed network at inference time is of the original desired
architecture. We focus on linear overparameterization (LO)
as most structural re-parameterization relies on linearity.

Linear networks and their convergence with gradient de-

ar
X

iv
:2

20
7.

05
53

2v
1

 [
cs

.L
G

]
 1

2
Ju

l 2
02

2

cent have been studied for a long time. It has been shown that
using a deep linear neural network can have advantages over
the use of a single linear layer, despite having the same com-
putational power, e.g., by accelerating convergence [9]. This
work also notes the vanishing gradient problem that can occur
in deep linear networks with near zero initialization.

A logical next step is to introduce LO to regular non lin-
ear networks by adding redundant (transformable / collapsi-
ble) linear layers. ExpandNets [10] used LO by expanding
every 2D convolution to multiple consecutive convolutions,
keeping the same receptive field size. While being promising
on shallow networks, it is less effective and even harmful for
deep networks. Also, even for shallow networks, too deep LO
can harm performance due to vanishing gradients [10, 9].
Contribution. In this paper, we propose a novel framework,
Kernel Filtering Linear Overparameterization (KFLO), for
improving the performance of a target network. Our approach
attempts to better utilize linear overparameterization and han-
dle the vanishing gradient problem, while also being com-
patible with every type of filtering layer and staying easy to
implement. Conceptually redundant linear layers are added to
the network in a kernel filtering fashion, which does not make
the network deeper from the network’s input perspective. The
overparameterized weights can be discarded after being used
in training, thus making inference time light-weight. Our
method enjoys a much smaller number of calculations needed
during training compared to using a straightforward deeper
LO. A a brief preview of KFLO can be found in Figure 1.
Code is avavilable at https://github.com/AmitHenig/KFLO.

2. METHOD

Notations. An input/signal/feature-map tensor has the shape
[batch× channels× spatial] (the spatial dimensions of an
image for example will be Height ×Width). The kernel of
a filtering layer (such as convolution or fully connected) has
the shape [output channels× input channels× spatial′].
The kernel is regarded to have output channels filters, each
of shape [1 × input channels × spatial′]. From this point
forward, we will examine a 2D convolutional layer as our fil-
tering layer, though our solution can easily be extended to any
spatial dimension (as we will see later), and fully connected
layers can be treated as inputs and filters having spatial di-
mensions sizes of 1. Furthermore, for simplicity, we will omit
the bias, as it can be easily added.
LO. Consider a linear cascade comprised of two 2D convo-
lutional layers with corresponding kernels/weights {Wi}2i=1,
where the second layer is a pointwise convolution with a triv-
ial sliding window. This cascade is a LO of some 2D convo-
lutional layer with weights W′ and the same sliding window
properties as W1. Meaning, that for the same input, kernel
W′ gives the same output as the cascade {Wi}2i=1:

W′ ∗ X1 = W2 ∗ (W1 ∗ X1) = W2 ∗ X2 = X3

X1 ∈ Rbatch×ch1×(H×W) ; W1 ∈ Rch2×ch1×(M×N)

X2 ∈ Rbatch×ch2×(H′×W ′) ; W2 ∈ Rch3×ch2×(1×1)

X3 ∈ Rbatch×ch3×(H′×W ′) ; W′ ∈ Rch3×ch1×(M×N)

Note that neither H ′, W ′ nor the receptive field size are af-
fected by the pointwise convolution, and so are solely depen-
dent on the properties of W1. This LO equality holds when:

W′(δ3, δ1,m, n) =
ch2∑
δ2

W2(δ3, δ2, 0, 0) ·W1(δ2, δ1,m, n) (1)

This can be shown by rearranging the convolution:

X3(b, δ3, h
′, w′) =

ch2∑
δ2

W2(δ3, δ2, 0, 0) · X2(b, δ2, h
′, w′)

where X2(b, δ2, h
′, w′) is

ch1∑
δ1

M∑
m

N∑
n

W1(δ2, δ1,m, n) · X1(b, δ1, µ
m,n
(h′,w′), ν

m,n
(h′,w′))

and µ, ν are the kernel-to-input spatial mapping functions,
defined by the sliding window properties (e.g., the mapping
functions for a trivial sliding window are µ = h′+m and ν =
w′ + n). Eq. 1 shows that each filter in W′ is a combination
of W1 filters, weighted by a corresponding filter in W2.
Kernel Filtering. We introduce our kernel filtering by trans-
forming Eq. 1 to a convolutional representation. Given the
nature of the pointwise convolution, kernel filtering for this
case may be represented with a 1D convolution; making its
implementation independent of the number of spatial dimen-
sions. This is done by convolution with the reshaped kernels.
For some spatial location t = (M ·N) · δ1 +N ·m+ n:

WR
1 ∈ R1×ch2×(ch1·M ·N) ; WR

1 (0, δ2, t) = W1(δ2, δ1,m, n)

WR
2 ∈ Rch3×ch2×(1) ; WR

2 (δ3, δ2, 0) = W2(δ3, δ2, 0, 0)

W′R ∈ R1×ch3×(ch1·M ·N); W′R(0, δ3, t) = W′(δ3, δ1,m, n)

W′R(0, δ3, t) =
ch2∑
δ2

WR
2 (δ3, δ2, 0) ·WR

1 (0, δ2, t)

We get a 1D pointwise convolution WR
2 for input WR

1 with
batch size of 1, resulting in the output W′R. Getting W′ from
W′R is of course done by reshaping.

W′ ∗ X1 = (W′R)R ∗ X1 = (WR
2 ∗WR

1)
R ∗ X1 = X3

KFLO. It can be shown that the above LO and kernel filtering
equivalences hold for any number of pointwise kernels used in
the linear cascade {Wi ∈ Rchi+1×chi×(1×1)}Bi=2, reshaping
them in the same manner to 1D pointwise convolutions:

XB+1 = WB ∗ (WB−1 ∗ ... ∗ (W2 ∗ (W1 ∗ X1))...) (2)

= (WR
B ∗ (WR

B−1 ∗ ... ∗ (WR
2 ∗WR

1)...))
R ∗ X1 (3)

= (W′R)R ∗ X1 = W′ ∗ X1 (4)

For a deployed kernel W′ ∈ Rchout×chin×(M×N), our
method is implemented during training by creating weights
{Wi}Bi=1 and calculating the effective convolution used in
the network using Eqs. 3, 4. After training is complete, the
LO weights {Wi}Bi=1 are discarded, only keeping W′ to be
used at inference time (see Figure 1). Applying KFLO on a
depthwise convolution layer is done exactly as for conven-
tional convolution, keeping in mind that the number of W1

input channels is #input channels
#groups . We define a scalar width

multiplier ρρρ, and set all configurable LO widths {chi}Bi=2

to Round(ρ · chout). We also denote BBB as the linear depth
multiplier. KFLO for a desired deployed architecture is
implemented by defining B>1 and ρ>0 (mainly choosing
values greater than 1 for LO), and applying our method as
described above for every filtering layer in the network (ex-
ample with B=2, ρ=4 in Figure 1.c).

We present two explanations for KFLO success. First,
we know that overparameterization helps train networks in
general. Second, from fully linear deep networks we know
that this redundant overparameterization can improve con-
vergence. Comparing to a LO with vanilla feature filtering,
KFLO does not make the trained architecture deeper, which
is a big advantage as a common problem of deep LO/networks
is the vanishing gradient which can really harm performance.
Also, our kernel filtering gives a great reduction in the num-
ber of operations that LO adds. While in feature filtering each
LO layer is applied to the full spatial size of the layer’s input
tensor, with our kernel filtering the LO layers filter a tensor
with spatial size of a convolution layer, which is usually sig-
nificantly smaller than that of the layer’s input signal.

3. RELATION TO OTHER LO WORKS

DO-Conv [11] has a similar approach as ours. They utilize a
linear depthwise separable convolutional layer, showing that
it can be collapsed to a single convolution kernel. Similarly
to us, DO-Conv suggests a kind of kernel filtering (kernel
composition), to replace the vanilla feature filtering during
training. There are two key differences between our method
and DO-Conv. First, the linear convolutional cascade of our
method is different than the linear depthwise separable convo-
lution in DO-Conv. Second, while we performs kernel filter-
ing by passing forward WR

1 through the 1D linear cascade,
DO-Conv passes the pointwise kernel backwards by filter-
ing it with a transposed depthwise convolution. The work
in Orthogonal Over-Parameterized Training [12] uses a tai-
lored LO filtering weights, with further restrictions to enforce
an orthogonal transformation on static weights. ACNet [13]
suggests Asymmetric Convolution Block (ACB), which can
be applied on a square convolution kernel. During training
the kernel is replaced with three parallel paths, each with a
convolution kernel followed by batch normalization, and their
outputs are summed. In two of the paths the kernels are of 1D,
one horizontal and the other vertical. This method does not

make the network deeper during training in terms of filtering
kernels and they show improvement in both small and big net-
works. Note that the commonly used pair of convolution fol-
lowed by batch normalization can also act as a LO on its own.
Diverse Branch Block (DBB) [14] suggests LO by replacing
the convolution kernel with an Inception-like DBB instance
during training. ACB (ACNet) can be viewed as a special
case of DBB. LO in training was also utilized in [6, 15, 16].
The work in [17] uses LO during training alongside block-
level KD on a student network initially obtained by compress-
ing the pre-trained teacher. LO is applied in a vanilla feature
filtering fashion by adding a pointwise convolution solely at
the end of each defined block and is collapsed/merged after
training. Compared to them, our kernel filtering is applied on
every filtering layer with further wider LO (width multiplier
ρ>1).

4. EXPERIMENTS

In this section we demonstrate our approach on two popular
datasets: CIFAR-10 and CIFAR-100 [18]. We evaluate KFLO
and compare it to both the vanilla approach and other rele-
vant training methods. We present experimental results for
different architectures and datasets, showing the advantages
of our method. We also compare the performance of KFLO
with different linear depth multipliers, B, and different width
multipliers, ρ. Finally, we show that KFLO can have a similar
effect of transfer learning. Note that with infinite memory and
time, many methods can be combined and applied simultane-
ously, multiple times. However, in the scope of this paper we
will only refer to training with no more than one LO method
applied at a time.
Networks. WRN-D-K will denote a Wide Residual Network
[7], with the wide-dropout residual block, of depth D (with a
3 residual groups structure) and widening factor K. In addi-
tion, we test with Cifar-quick [19] and VGG16 [20] where the
two fully connected layers are replaced with global average
pooling followed by a fully connected layer that outputs 512
channels, as [13]. For both architectures, batch normalization
were added after every convolution layer, again as [13].
Implementation Details. When using our training method,
KFLO is applied to all the convolutional and fully connected
kernels. KFLO with a linear depth multiplier B and width
multiplier ρ will be denoted by KFLO Bxρρρ. We apply a
weak weight decay of 10−9 on the pointwise convolutions in
the linear cascades {Wi}Bi=2, and initialize them with identity
(dirac). We apply the vanilla training weight decay value on
the generated weights W′, and no weight decay on the filtered
kernels W1, thus not adding a hyper parameter to tune. DO-
Conv is implemented with Dmul equals to the filter’s spatial
size M × N , as in [11]. Exponential moving average of the
network weights when trained in a vanilla fashion will be re-
ferred to as EMA. The Experiments ran on NVIDIA GeForce
RTX 2080 Ti. We followed the experimental settings of [13],

Method Cifar-quick VGG16 wResnet-16-8 wResnet-28-2 wResnet-28-5 wResnet-28-10
vanilla 86.26 ±0.22 93.85 ±0.18 95.44 ±0.12 94.49 ±0.12 95.50 ±0.06 95.85 ±0.10
EMA 86.26 ±0.21 93.87 ±0.17 95.44 ±0.12 94.52 ±0.10 95.49 ±0.05 95.84 ±0.09
ACNet 86.83 ±0.28 94.41 ±0.12 95.62 ±0.14 94.75 ±0.18 95.79 ±0.14 96.14 ±0.06
DO-Conv 86.85 ±0.14 94.00 ±0.21 95.50 ±0.14 94.72 ±0.09 95.61 ±0.15 96.01 ±0.12
KFLO 2x4 87.41 ±0.23 94.70 ±0.09 95.68 ±0.07 94.89 ±0.23 95.89 ±0.09 96.22 ±0.12

Table 1. CIFAR-10 accuracy results, methods comparison.

Method Cifar-quick VGG16 wResnet-16-8 wResnet-28-2 wResnet-28-5 wResnet-28-10
vanilla 57.80 ±0.30 73.97 ±0.28 78.58 ±0.22 75.37 ±0.26 78.89 ±0.39 80.18 ±0.25
EMA 57.80 ±0.26 73.97 ±0.29 78.60 ±0.21 75.44 ±0.27 78.88 ±0.39 80.20 ±0.25
ACNet 58.38 ±0.39 74.95 ±0.22 79.10 ±0.18 76.02 ±0.32 79.64 ±0.32 81.36 ±0.14
DO-Conv 58.86 ±0.20 74.38 ±0.17 79.01 ±0.28 75.73 ±0.29 79.10 ±0.19 80.59 ±0.29
KFLO 2x4 59.78 ±0.25 75.69 ±0.14 79.74 ±0.24 76.07 ±0.29 79.96 ±0.27 81.38 ±0.15

Table 2. CIFAR-100 accuracy results, methods comparison.

excluding WRN Experiments where we followed [4].
Transfer learning (TL) experiments were conducted on
CIFAR-100, with only 40% of the training data available
(uniformly sampled from each class). Networks pre-trained
in the vanilla fashion on the full CIFAR-10 training set were
used for weights initialization. In the classic strategy, a pre-
trained network is used as the starting point and it is fine-tuned
with a learning rate of an order of magnitude smaller.

With KFLO, more than one pre-trained model can be uti-
lized in weight initialization. Setting the width multiplier ρ to
the number of pre-trained networks results in KFLO filtering
kernels (W1) wide enough to hold all relevant pre-trained ker-
nel filters. Before Training starts, we stack the corresponding
pre-trained kernels and use them as initialization weights for
the relevant filtering kernels. Layers on which KFLO is not
applied are initialized with the weights of the first pre-trained
network. This with the Identity initialization of KFLO’s LO
pointwise convolutions, means that the starting network gives
identical outputs to the first pre-trained network.

4.1. Results

Comparison. We first present results comparing our method
to vanilla training, EMA, ACNet [13] and DO-Conv [11]. Re-
sults for CIFAR-10 and CIFAR-100 can be found in Tables 1
and 2, respectively. We can see that KFLO achieves the high-
est accuracy with all featured architectures.
Ablation study. We compare the performance of our method
with different linear depth multipliers B, and different width
multipliers ρ. We show results for CIFAR-10 in Table 3 and
for CIFAR-100 in Table 4. It seems that in most cases, the
bigger the width multiplier the better the performance boost
is. However, a larger depth multiplier harms performance.
Transfer learning. Table 5 shows results for the TL prob-
lem. It displays results for both networks trained from scratch,
and networks trained with TL - denoted with the TL suffix.
We can see the expected performance boost TL gives vanilla
training. Yet, it would appear that KFLO does not benefit
much from the pre-trained weights, and sometimes it can even
harm performance. It seems that the straight forward method

Method wResnet-16-8 wResnet-28-2 wResnet-28-5 wResnet-28-10
KFLO 2x1 95.50 ±0.17 94.59 ±0.10 95.83 ±0.09 96.16 ±0.13
KFLO 2x2 95.62 ±0.11 94.60 ±0.18 95.84 ±0.13 96.28 ±0.10
KFLO 2x3 95.59 ±0.10 94.88 ±0.08 95.79 ±0.15 96.26 ±0.15
KFLO 2x4 95.68 ±0.07 94.89 ±0.23 95.89 ±0.09 96.22 ±0.12
KFLO 3x2 94.65 ±0.15 91.98 ±0.14 94.68 ±0.17 95.65 ±0.11

Table 3. CIFAR-10 accuracy results, KFLO ablation study.

Method wResnet-16-8 wResnet-28-2 wResnet-28-5 wResnet-28-10
KFLO 2x1 79.47 ±0.21 75.69 ±0.39 79.60 ±0.24 81.35 ±0.23
KFLO 2x2 79.68 ±0.31 75.91 ±0.31 79.76 ±0.22 81.36 ±0.15
KFLO 2x3 79.59 ±0.16 76.00 ±0.29 79.96 ±0.18 81.46 ±0.15
KFLO 2x4 79.74 ±0.24 76.07 ±0.29 79.96 ±0.27 81.33 ±0.20
KFLO 3x2 76.51 ±0.26 68.21 ±0.39 75.69 ±0.22 78.93 ±0.12

Table 4. CIFAR-100 accuracy results, KFLO ablation study.

Method wResnet-16-8 wResnet-28-2 wResnet-28-5 wResnet-28-10
vanilla 69.81 ±0.19 66.69 ±0.24 69.56 ±0.19 70.79 ±0.41
vanilla TL 71.20 ±0.41 67.12 ±0.25 71.43 ±0.42 73.15 ±0.33
KFLO 2x1 71.50 ±0.23 67.06 ±0.53 71.04 ±0.27 73.11 ±0.26
KFLO 2x1 TL 71.62 ±0.37 67.26 ±0.41 71.33 ±0.34 72.19 ±0.35
KFLO 2x4 71.86 ±0.14 67.66 ±0.34 71.63 ±0.27 73.36 ±0.29
KFLO 2x4 TL 71.97 ±0.32 67.85 ±0.32 71.60 ±0.22 72.55 ±0.26

Table 5. Transfer Learning accuracy results. Only 40% of
the CIFAR-100 training set available. The TL suffix denotes
using networks pre-trained on the full CIFAR-10 training set.

to incorporate the pre-trained networks with KFLO is not op-
timal. Nonetheless, KFLO (without TL) outperforms vanilla
TL, and it would seem that it achieves a similar effect al-
though it does not have access to the extra data (CIFAR-10).

5. CONCLUSION

This work introduced KFLO, a novel approach to train a
neural network in a structural re-parameterization fashion by
modeling kernels as the result of linear convolutional kernel
filtering. Interestingly, this over-parameterization, which can
create a very large redundancy, improves the network train-
ing. This stands in line with the recent both practical and
theoretical findings that overparameterization improves the
generalization of neural networks [21, 22, 23, 24].

We have focused on demonstrating our approach in super-
vised learning and transfer learning settings, though we be-
lieve that our proposed framework has large potential in being
applied to other problems such as domain adaptation, semi-
supervised learning and incremental learning. Moreover, one
may consider in our scheme many other topologies for the
kernel filtering block. We hope that this new tool with its dif-
ferent variations will be used to improve many other tasks. Its
simplicity allows using and extending it to new setups easily.
Acknowledgement. This research was supported by Wipro
and ERC-StG grant no. 757497

6. REFERENCES

[1] Cristian Bucila, Rich Caruana, and Alexandru
Niculescu-Mizil, “Model compression,” in KDD
’06, 2006.

[2] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distill-
ing the knowledge in a neural network,” in NIPS Deep
Learning Workshop, 2014.

[3] Tommaso Furlanello, Zachary Chase Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar,
“Born again neural networks,” in ICML, 2018.

[4] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep
mutual learning,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 4320–4328.

[5] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir
Levine, Akihiro Matsukawa, and Hassan Ghasemzadeh,
“Improved knowledge distillation via teacher assistant,”
in AAAI, 2020, pp. 5191–5198.

[6] Xiaohan Ding, X. Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun, “Repvgg: Making vgg-
style convnets great again,” in CVPR, 2021.

[7] Sergey Zagoruyko and Nikos Komodakis, “Wide resid-
ual networks.,” in British Machine Vision Conference,
2016.

[8] C. Zhang, S. Bengio, Moritz Hardt, B. Recht, and Oriol
Vinyals, “Understanding deep learning requires rethink-
ing generalization.,” in ICLR, 2017.

[9] Sanjeev Arora, N. Cohen, and Elad Hazan, “On the op-
timization of deep networks: Implicit acceleration by
overparameterization,” ICML 2018, 2018.

[10] Shuxuan Guo, Jose M. Alvarez, and M. Salzmann, “Ex-
pandnets: Linear over-parameterization to train compact
convolutional networks,” NeurIPS, 2020.

[11] Jinming Cao, Yangyan Li, M. Sun, Ying Chen,
D. Lischinski, D. Cohen-Or, B. Chen, and C. Tu,
“Do-conv: Depthwise over-parameterized convolutional
layer,” ArXiv, vol. abs/2006.12030, 2020.

[12] Weiyang Liu, Rongmei Lin, Z. Liu, J. Rehg, Li Xiong,
and L. Song, “Orthogonal over-parameterized training,”
ArXiv, vol. abs/2004.04690, 2020.

[13] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and
J. Han, “Acnet: Strengthening the kernel skeletons for
powerful cnn via asymmetric convolution blocks,” 2019
IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pp. 1911–1920, 2019.

[14] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and
Guiguang Ding, “Diverse branch block: Building a
convolution as an inception-like unit,” ArXiv, vol.
abs/2103.13425, 2021.

[15] K. Bhardwaj, M. Milosavljevic, A. Chalfin, Naveen
Suda, Liam O’Neil, Dibakar Gope, Lingchuan Meng,
Ramon Matas Navarro, and Danny Loh, “Collapsi-
ble linear blocks for super-efficient super resolution,”
ArXiv, vol. abs/2103.09404, 2021.

[16] Shoufa Chen, Y. Chen, S. Yan, and Jiashi Feng, “Effi-
cient differentiable neural architecture search with meta
kernels,” ArXiv, vol. abs/1912.04749, 2019.

[17] Tianhong Li, Jianguo Li, Zhuang Liu, and Changshui
Zhang, “Few sample knowledge distillation for efficient
network compression,” 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
14627–14635, 2020.

[18] Alex Krizhevsky, “Learning multiple layers of features
from tiny images,” 2009.

[19] Jasper Snoek, H. Larochelle, and Ryan P. Adams, “Prac-
tical bayesian optimization of machine learning algo-
rithms,” in NIPS, 2012.

[20] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” CoRR, vol. abs/1409.1556, 2015.

[21] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang,
“Learning and generalization in overparameterized neu-
ral networks, going beyond two layers,” in Advances in
Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox,
and R. Garnett, Eds., pp. 6158–6169. Curran Associates,
Inc., 2019.

[22] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli,
Yann LeCun, and Nathan Srebro, “The role of over-
parametrization in generalization of neural networks,” in
International Conference on Learning Representations,
2019.

[23] Luca Venturi, Afonso S. Bandeira, and Joan Bruna,
“Spurious valleys in one-hidden-layer neural network
optimization landscapes,” Journal of Machine Learning
Research, vol. 20, no. 133, pp. 1–34, 2019.

[24] Alon Brutzkus and Amir Globerson, “Why do larger
models generalize better? a theoretical perspective via
the xor problem,” in ICML, 2019.

	1 Introduction
	2 Method
	3 Relation to other LO works
	4 Experiments
	4.1 Results

	5 Conclusion
	6 References

