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ABSTRACT

Image inpainting is an old problem in computer vision that
restores occluded regions and completes damaged images. In
the case of facial image inpainting, most of the methods gen-
erate only one result for each masked image, even though
there are other reasonable possibilities. To prevent any po-
tential biases and unnatural constraints stemming from gen-
erating only one image, we propose a novel framework for
diverse facial inpainting exploiting the embedding space of
StyleGAN. Our framework employs pSp encoder and SeFa
algorithm to identify semantic components of the StyleGAN
embeddings and feed them into our proposed SPARN decoder
that adopts region normalization for plausible inpainting. We
demonstrate that our proposed method outperforms several
state-of-the-art methods.

Index Terms— Facial Image Inpainting, Pluralistic Im-
age Inpainting, StyleGAN Inversion

1. INTRODUCTION

Image inpainting is one of the tasks in computer vision that re-
moves undesired objects or restores occluded regions. Since
it is a well-known problem in computer vision, numerous
approaches have been proposed in the past. Among them,
traditional approaches [1, 2] propagate small patches from
the background area to the missing regions using similarity.
However, unlike natural or landscape image inpainting, fa-
cial images have unique parts such as nose or mouth, so these
methods could not be used.

With the recent development of generative adversarial
learning [3], GAN-based image inpainting is capable of
synthesizing plausible results even when novel objects are
present. GLCIC [4] utilized dilated convolutional layers and
two auxiliary discriminators in order to complete the missing
parts. CA [5] was the first attention-based method that uses
coarse-to-fine networks for context-aware inpainting. More
lately, LBAM [6] proposed learnable bidirectional attention
maps that enable more realistic inpainting for irregular masks.

For inpainting an image with backgrounds and objects,
there are a number of plausible ways to fill in the missing
part. Thus, the methods capable of only suggesting one of
these many possibilities would have some built-in biases and
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constraints that may pose limitations on the utilities of such
methods. For instance, it would be highly desirable in GAN-
based data augmentation to have a method capable of suggest-
ing a variety of possibilities in a missing region of an image.

To overcome this limitation, PIC [7] used a short+long
term attention layer to synthesize pluralistic inpainting re-
sults. Furthermore, this method proposed a probabilistic prin-
cipled framework comprised of two parallel paths called gen-
erative path and reconstructive path. PD-GAN [8] provides
diverse inpainting results using the proposed SPDNorm Res-
block. PD-GAN also adds perceptual diversity loss for vari-
ous inpainting possibilities in the training process. Contrary
to the well-known diversity loss [9] perceptual diversity loss
is calculated on the perceptual space for keeping the context
unchanged and training stable.

On a related front, numerous researches in GAN have
been conducted to synthesize diverse high-resolution images.
StyleGAN-based methods [10, 11, 12] have been highly suc-
cessful in generating some astonishing images by controlling
the latent space. Pixel2style2pixel (pSp) [13] proposed an en-
coder network that directly generates a sequence of style vec-
tors which are input into a StyleGAN decoder, forming the
extended latent space. SeFa [14] or GANSpace [15] uncover
relevant directions in the latent space of pre-trained Style-
GAN that affect the semantic properties of the decoded image
in an unsupervised manner. The aforementioned methods are
capable of generating a variety of images in a range of details
from coarse features such as shapes or poses to fine properties
such as lighting, background attributes, or feature variations.

Given this, we propose a novel framework for diverse fa-
cial inpainting based on controlling StyleGAN’s latent space
for generating a set of plausible inpainted regions while main-
taining the remaining regions. Our approach requires only an
image with a masked region as input. Our framework first
coarsely completes the input (masked) image from the pre-
trained inpainting network so that pSp encoder will extract
style vectors in the latent space. Afterward, we manipulate
the latent space in meaningful directions to transform the se-
mantic attributes of the decoded images. By feeding the ma-
nipulated latent space into the StyleGAN decoder, we could
generate images with transformed facial shapes or attributes.
Additionally, we feed decoded images as a condition into our
proposed spatially adaptive region normalization (SPARN)
decoder.
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Fig. 1. Summary of the proposed framework. Istyle′ and M are the input of SPARN decoder. In the SPARN decoder, each
region normalization layer uses the Istyle′ and M to modulate the layer activations.

Our proposed decoder adopts region normalization [16]
in each layer to allow synthesizing realistic inpainting results.
Thus, the proposed generator can be trained to perform more
diverse image inpainting using StyleGAN without any prior
condition. Based on our experiments of the publicly released
dataset CelebA-HQ, we demonstrate that the proposed ap-
proach delivers superior performance compared to various
state-of-the-art approaches specialized in inpainting tasks.

2. PROPOSED METHOD

2.1. Proposed Framework

This section introduces our proposed facial image inpainting
framework. As shown in Fig. 1, our framework consists of
four parts: a pre-trained inpainting network, a pSp encoder,
a StyleGAN decoder, and the proposed generator. We first
apply a customized MLGN [17] model for coarse inpainting.
Our customized MLGN differs from the original model by
an adjustment made to the lambda parameter for synthesizing
blurry results. The blurry results would promote more diverse
embeddings by pSp encoder, thereby allowing StyleGAN to
generate more diverse image inpainting. We generate ground
truth and masked image pairs as

Imasked = Igt �M, (1)

where Igt is the ground truth image, M is the mask applied
to erase portions of the ground truth image, and Imasked is
the masked image. We input Imasked into a pre-trained cus-
tomized MLGN as

Icoarse = cMLGN(Imasked). (2)

Most image inpainting methods generate only one result
for each masked image, even though there are many other
possibilities. As such, there are always possibilities of unre-
alistic biases and constraints due to the network being forced
to produce only one of many plausible results. To prevent

such artificial biases, we use StyleGAN-based [11] image
augmentation that is capable of synthesizing a variety of im-
ages that has a similar structure as the ground truth but with
changed facial attributes. Icoarse is applied to pSp [13] en-
coder which maps the embedding vector w in a latent space
W+. The extracted w is then decoded to produce an initial
set of diverse images using StyleGAN. Afterward, we use the
SeFa [14] algorithm that performs eigen-decomposition of
StyleGAN’s weight matrix to discover principal components
that span dominant changes in the decoded images. We feed
the proposed generator with the embeddings wδi perturbed
by δi in a number of principal directions during the training
process for synthesizing multiple images.

Istyle = StyleGAN(pSp(Icorase)),
Istyle+ = {StyleGAN(wδ1), ...,StyleGAN(wδα)},

(3)

where α is the number of Istyle+ for training. Our generator
G(·) is comprised of a SPADE [19] encoder and the proposed
SPARN decoder. The proposed SPARN decoder may look
similar to the existing SPADE decoder, but it can maintain
consistency in the masked and unmasked regions by using
region normalization [16] for image inpainting. As an input
condition of SPARN decoder, we define Istyle′ as,

Istyle′ = Imasked +Mr � {Istyle, Istyle+}, (4)

where, Mr is the reversed mask. Additionally, we input
Imasked into the SPADE encoder to ensure that features
present in the masked image are maintained in the output
images. Our SPARN decoder consists of SPARN residual
block and following upsampling layers. Since each residual
block runs at a different scale, we downsample the input M
and Istyle′ to match the spatial resolution. Thereby, we could
perform more diverse facial image inpainting using as condi-
tions various images that transformed several facial attribute
detail.
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Fig. 2. Pluralistic qualitative comparison with PIC [7] and Ours.
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Fig. 3. Qualitative comparison with LBAM [6], EC [18],
MLGN [17], and Ours.

Iout = G(Imasked, Istyle′ ,M) (5)

Furthermore, we encode Iout and Igt into the discrimina-
tor for calculating adversarial loss. We use Spectral Normal-
ization [20, 21] in the discriminator since it is faster and more
stable than other normalizations by a simple formulation.

2.2. Loss Function

In order to synthesize plausible and realistic image inpaint-
ing, we define our loss function in two parts: inpainting loss
and adversarial loss. Our proposed inpainting loss is com-
posed of four components: reconstruction loss, VGG style
loss, perceptual loss, and MS-SSIM loss. Reconstruction loss
completes occluded regions using l1-norm error. By compar-
ing the generated image to the ground truth, we calculate the
hole region loss and valid region loss, respectively. Addition-
ally, we define perceptual loss and VGG style loss with the
VGG-19 network [22] pre-trained on ImageNet. As the name
indicates, perceptual loss [23] measures the feature map dis-
tance between the generated image and the ground truth im-
age. Our perceptual loss looks similar to the aforementioned
perceptual loss, but we further measure the distance between
Iout with Istyle. We adopt Mr to reflect Istyle more plausible
in erased regions. We defined our perceptual loss as,

Lper =
∑
i

α∑
j=1

||Fi(Ioutj ) ·Mr − Fi(Istylej ) ·Mr||1

+
∑
i

||Fi(Iout) ·M − Fi(Igt) ·M ||1, (6)

where Fi denotes the feature maps of the i ′th layer of a VGG-
19 network. We use VGG style loss, as defined by [24],
which alleviates “checkerboard” artifacts caused by upsam-
pling convolution layers. Our VGG style loss also compares
Iout with Istyle, using Mr.

Lstyle =
∑
k

α∑
j=1

||GFk (Ioutj ) ·Mr −GFk (Istylej ) ·Mr||1

+
∑
k

|GFk (Iout) ·M −GFk (Igt) ·M ||1, (7)

where GFk is a gram matrix consisting of feature maps Fk.
Additionally, we customize another loss function by utilizing
MS-SSIM [25, 17], which is one of the image quality com-
parison approaches.

LMS-SSIM = 1− 1

N

N∑
i=1

MS-SSIMn (8)

We calculate adversarial loss using WGAN-GP which op-
timizes the Wasserstein distance. We define adversarial loss
LG and LD as,

LG = EImasked [D(G(Imasked, Istyle′ ,M))], (9)
LD = EIgt [D(Igt)]− EIout [D(Iout)]

− λgpEÎ [(||∇ÎD(Î)||2 − 1)2]. (10)

Our overall loss denoted as,

Lall = λadvLadv + λssimLMS-SSIM + λstyLstyle

+ Lper + λholeLhole + λvalidLvalid, (11)

where, λ are hyper-parameters that control the terms’ relative
importance.



Fig. 4. Illustration of continuous inpainting results using SeFa that adjusts delta gradually.

Mask Ours LBAM EC MLGN

SSIM

Quickdraw 0.833 0.821 0.817 0.832
10-20% 0.837 0.814 0.827 0.839
20-30% 0.777 0.744 0.761 0.777
30-40% 0.709 0.667 0.681 0.706
40-50% 0.633 0.583 0.595 0.624

LPIPS

Quickdraw 0.049 0.047 0.047 0.063
10-20% 0.052 0.057 0.051 0.065
20-30% 0.084 0.087 0.082 0.103
30-40% 0.124 0.126 0.128 0.148
40-50% 0.170 0.172 0.183 0.201

FID

Quickdraw 25.95 25.79 27.49 28.45
10-20% 24.74 27.63 25.65 26.73
20-30% 34.55 36.51 34.80 38.34
30-40% 46.87 48.47 47.14 52.54
40-50% 64.86 64.40 63.75 73.07

Table 1. Quantitative comparison on CelebA-HQ. In each
row, the best results are shown in bold text.

Mask PIC Ours
Diversity
(LPIPS) ↑

20-30% 0.0714 0.0849
30-40% 0.1079 0.1313

Table 2. Quantitative comparison of diversity on CelebA-
HQ. For the diversity comparison, higher LPIPS is better.

3. EXPERIMENTS

3.1. Implement Details

For the implementation, we used the Pytorch library. Our
hyper-parameters λadv , λssim, λsty , λhole, and λvalid are set
to 0.5, 120, 3, and 0.5 respectively. In this paper, we evaluate
all the models using CelebA-HQ dataset and split them into
two groups: 28,000 selected for training and 2000 for test-
ing. We used 256×256 images with irregular holes to train
and evaluate the proposed methods. In addition, we combine
Quickdraw irregular mask dataset [26] with 85×85 square
holes in random positions to create more irregular holes.
By combining square holes with the Quickdraw dataset, the
model becomes more robust to irregular holes.

3.2. Qualitative Comparisons

First, we compare the image inpainting quality of our baseline
against three state-of-the-art methods. Fig. 3 describes the im-

SPADE w/o RN Ours
SSIM 0.816 0.817 0.833
LPIPS 0.056 0.057 0.049

FID 27.96 28.45 25.95

Table 3. Quantitative comparison of ablation study on
CelebA-HQ. We choose the Quickdraw irregular mask here.

ages generated by the proposed method and those generated
by the other methods. Our model is superior to all the others
in the aspect of image quality and plausibility. Fig. 2 com-
pares diverse images generated by PIC [7] and ours. Com-
pares to the PIC, our method accomplishes more diverse and
pluralistic instances.

3.3. Quantitative Comparisons

We implement a quantitative comparison of image inpainting
to three existing methods and our own, using different types
and sizes of masks. As shown in Table. 1, our method outper-
forms three metrics SSIM, LPIPS [27], and FID [28] to ex-
isting methods that specialize in only image inpainting tasks.
Table. 2 shows that our method achieves a relatively higher
diversity score than another method. The diversity score is
calculated between 4K pairs synthesized from a sampling of
1K images. Overall, we feed the w into StyleGAN to calcu-
late Table. 1 and feed the wδ to calculate the diversity score.

To justify the effectiveness of the proposed SPARN de-
coder, we conduct the ablation study as follows: 1) Using
SPADE [19] decoder; 2) replacing all the region normaliza-
tion [16] with batch normalization (w/o RN). As shown in
Table. 3, each of the proposed sub-modules performs a very
important role in the overall architecture.

4. CONCLUSION

We propose a novel method of generating diverse facial in-
painted images based on manipulating StyleGAN embedding
space. To properly discover meaningful direction and the as-
sociated variations for diverse facial inpaintings, we utilize
pSp encoder and SeFa algorithm. These embedded vectors
and the variations are then fed into our proposed SPARN de-
coder as conditions for diverse inpainting. From the pro-
posed framework, we demonstrated that our method synthe-
sizes plausible diverse images from a single masked input
while maintaining high inpainting quality.
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