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ABSTRACT

Object Re-IDentification (ReID), one of the most significant
problems in biometrics and surveillance systems, has been
extensively studied by image processing and computer vision
communities in the past decades. Learning a robust and dis-
criminative feature representation is a crucial challenge for
object ReID. The problem is even more challenging in ReID
based on Unmanned Aerial Vehicle (UAV) as the images
are characterized by continuously varying camera parameters
(e.g., view angle, altitude, etc.) of a flying drone. To address
this challenge, multiscale feature representation has been con-
sidered to characterize images captured from UAV flying at
different altitudes. In this work, we propose a multitask learn-
ing approach, which employs a new multiscale architecture
without convolution, Pyramid Vision Transformer (PVT), as
the backbone for UAV-based object ReID. By uncertainty
modeling of intraclass variations, our proposed model can be
jointly optimized using both uncertainty-aware object ID and
camera ID information. Experimental results are reported on
PRAI and VRAI, two ReID data sets from aerial surveillance,
to verify the effectiveness of our proposed approach.

Index Terms— UAV-based object ReID, Pyramid Vision
Transformer, Uncertainty Modeling, Multitask Learning

1. INTRODUCTION

Object Re-IDentification (ReID) [1, 2], the task of matching
a particular object across different camera views, has been
widely studied due to its applications in visual surveillance,
especially in the field of person and vehicle tracking. Most of
the existing work on object ReID is mainly focused on tack-
ling this problem in a normal surveillance domain, e.g. secu-
rity cameras installed on the top of a building. With the rapid
development in the UAV industry, visual surveillance using
UAV devices has received increasing attention, such as nor-
mal surveillance. However, ReIDs based on drones or UAVs
[3, 4] have remained an under-researched topic. Unlike the
normal domain, the ReID of UAV objects is arguably more
challenging because drone-based images often contain more

Fig. 1: Example images showing the need for multiscale fea-
ture fusion. The images are taken by drones flying at multiple
altitudes. A single scale can only capture specific parts of ob-
jects, lacking the capability to learn fine scale features. Mul-
tiscale features can help a model learn highly discriminative
feature space by fusing information across multiple scales.

uncertainty (e.g., view angles, camera distance, and weather
conditions) than standard surveillance images.

In the context of the ReID object based on UAVs, there
exist several obstacles arising from the increased uncertainty.
As shown in Figure 1, both the scale and pose variations are
important factors to consider because the altitude changes of
the flying drones can be substantial. As the images captured
are by UAV flying at different altitudes, a ReID model op-
erating on a single scale or pose cannot create a descriptive
feature space that fully characterizes the entire aerial domain.
Therefore, it is natural to develop a ReID model capable of
learning multiscale and pose-invariant features. Moreover,
to detect subtle changes of objects of interest (e.g., a person
wearing different colored dresses, different glasses, shoes,
etc.), we target a discriminative feature space that is gener-
alizable to both coarse- and fine-grained features.

Today, the convolutional neural network (CNN) is ar-
guably the most popular backbone in terms of designing
ReID classifiers. However, the latest advances in deep learn-
ing have seen the great success of Transformers [5, 6] in
natural language processing and computer vision. This class
of convolution-free models can be a better fit for the problem
of object ReID using self-attention. Most existing research
on object (Persons, Vehicles) ReID has been conducted for
normal surveillance. Limited attention has been paid to
object ReID in aerial surveillance. Most approaches (e.g.,
part-based convolutional baseline [7], generative adaptive
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alignment network [8], multiple granularity network [9])
follow CNN-based architectures. Transformer [10] is a new
trend in the solution of object ReID, establishing it as a strong
baseline that beats current state-of-the-art methods.

Motivated by the recent success of the transformer in nor-
mal surveillance object ReID [1], we adopt an all-attention
transformer-based approach for UAV-based object Re-ID. To
address the challenges arising from aerial images, we pro-
pose an uncertainty-aware approach that exploits hierarchical
feature maps and global channel attention gate for object Re-
identification in the UAV domain. Our proposed approach
uses a modified version of Pyramid Vision Transformer
(PVT) [11] as the backbone, which is a convolution-free
architecture. Then we apply spatial attention [12] to these
multi-resolution feature maps to put more focus on important
features, filtering out irrelevant ones. To incorporate cam-
era information, we add additional head to the PVT model
and optimize the network using both camera ID, object ID,
and center loss in a joint fashion. Moreover, we normalize
the style variance present in different cameras, incorporat-
ing Batch Instance Normalization (BIN) [13] in our model.
Finally, with the help of the channel attention aggregation
gate [14], the model selectively learns the feature maps with
higher weights. Inspired by recent work on modeling feature
uncertainty for personal Re-ID [15], we propose to model
aerial uncertainty by predicting the variance of data as the
model output.

PVT-based object recognition with uncertainty estima-
tion is particularly suitable for UAV-based Re-ID of people
and vehicles in aerial surveillance and long-range biomet-
rics [16]. Our technical contributions can be summarized
as follows: (I) We seek to explore a modified Pyramid Vi-
sion Transformer (PVT) tailored for object re-identification
in UAV-based scenarios. The proposed model utilizes mul-
tiscale features to re-identify objects for aerial surveillance.
(II) Spatial attention module helps focus on the relevant in-
formation of the feature maps by filtering out noise. The
channel attention gate follows an adaptive fusion scheme,
which dynamically selects the appropriate feature maps to
exploit channel-wise dependencies. (III) We train our model
considering uncertainty in terms of object identity and cam-
era identity for multitask learning. The model is regularized
using Batch Instance Normalization (BIN) to mitigate style
variations in multiple cameras. (IV) Our proposed framework
achieves state-of-the-art performance on two aerial surveil-
lance datasets, PRAI-1581 [3] and VRAI [4], respectively.

2. METHODOLOGY

In this section, we present our multiscale approach for object
Re-Identification. An overview of our proposed method is
outlined in Figure 2. We propose a multi-task Pyramid Vi-
sion Transformer (PVT) [11], a convolution-free backbone
designed to learn multiscale feature maps. We use two heads

for object and camera ID recognition, respectively. Batch
Instance Normalization (BIN) is incorporated in our model
to achieve camera style invariance. To make feature maps
spatially aware of the location of important objects, we apply
spatial attention [12] to feature maps of different resolutions.
Finally, we combine multiscale feature maps in an adap-
tive way using a Channel Attention Gate [12, 14]. To make
the identifier robust to occlusion, we estimate the aleatory
uncertainty[17] present in the data while computing the loss
for the model.

2.1. Multi-task Pyramid Vision Transformer

Pyramid Vision Transformer (PVT) [11] generates hierarchi-
cal feature maps of multiple resolutions. This architecture
has four blocks. Each block is responsible for generating a
feature map of certain resolution. Each stage consists of a
patch embedding layer and a transformer encoder layer. Each
transformer encoder layer is composed of a modified attention
layer named spatial reduction attention (SRA) and a feedfor-
ward layer. SRA is designed to reduce memory cost so that
high-resolution feature maps can be processed. First, the in-
put image with a size of H ×W × 3 is separated into HW
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patches and the patch size is 4 × 4. Then, each patch is flat-
tened through a linear projection and passed through a num-
ber of transformer encoders. After that, we get the output
feature map of size H

4 ×
W
4 × C1. Similarly, we obtain the

output feature maps of sizes H
8 ×

W
8 ×C2, H

16 ×
W
16 ×C3, and

H
32 ×

W
32 × C4, respectively.

The original PVT uses non-overlapping patches. Inspired
by the recent work of TransReID [1], we have generated over-
lapping patches using a sliding window or shifting operator.
The head in PVT is used to identify objects. Differently from
the original PVT, we use an additional head for camera ID
recognition. By doing this, we try to take advantage of the
camera ID labels to fuse camera information into the original
model. As the generated feature maps are produced by multi-
ple transformer encoders, the generated feature space is com-
plex, and it can be confusing for the model to extract mean-
ingful features for the ReID task. To obtain a more refined
feature map so that the model can learn more informative spa-
tial features, we apply spatial attention to the feature maps of
different resolutions. In spatial attention, both MaxPooling
and AveragePooling are performed on the channel dimension,
and the pooled feature space is concatenated to generate the
2D spatial attention map.

Additionally, we have added Batch Instance Normaliza-
tion (BIN) [13] to reduce style variations on multiple cameras.
The purpose of using BIN is to normalize the style-preserving
discriminative features of the ReID objectReID. To fully ex-
ploit the functionality of multiscale features, we combine fea-
ture maps of multiple resolutions using a global channel at-
tention gate. To tune the channel weights of multiscale fea-
ture maps in a dynamic fashion, we use a shared channel at-



Fig. 2: The overall architecture of our proposed model. The model uses multi-task PVT as the backbone. We apply Spatial
Attention (SA) on feature maps of individual scales which helps to focus the network on the most informative features. The
channel attention (CA) is a mini-network with shared wights. The Identification (ID) head is responsible for classifying the
object instances whereas CamID head gives prediction on camera ID labels considering uncertainty of prediction in both cases.
Batch Instance Normalization (BIN) layer helps the network to achieve style generalization among different cameras.

tention gate to learn the inter-channel relationship within a
feature map regarding the importance of feature maps. We
follow the design procedure mentioned in [14] to implement
this gate as a mini-network composed of several global aver-
age pooling layers (GAP) and a multi-layer perceptron (MLP)
with reduced hidden dimension and one ReLU-activated hid-
den layer followed by sigmoid activation.

2.2. Loss Function Formulation

To train our model, we use a combination of three uncertainty-
aware losses: identity loss,cameraID and center loss. Identity
loss consists of softmax cross-entropy loss and triplet loss
[18, 19]. Camera ID information is learned through centroid
triplet loss [20] and center loss considers the distance from
center information.
Uncertainty-aware ID loss: This loss is computed using
a hybrid of softmax cross-entropy loss and triplet loss [21]
taking into account the uncertainty between classes. The
uncertainty-aware softmax cross-entropy loss is calculated by
[18]:

Lsoftmax =
1

2Nσ(xi)2

N∑
i=1

log(pid(h
id
i , yi)) +

1

2
logσ(xi)

2

(1)
where N is the number of samples, yi is the ground truth
label, and σ(xi)2 is the variance of the data. We model our
uncertainty-aware soft-margin triplet loss using the following
formula [19]:

Ltriplet =
1

σ(xa)2
log(1 + exp(f(xa, xn)− f(xa, xp))+

1

2
logσ(xa)

2 (2)

where a triplet consists of < xa, xp, xn > in which xa is the
anchor image of a person, xp is the positive anchor image
belonging to the identity of the same person, and xn is the
negative anchor image belonging to a different person. Note
that triplet loss cannot measure the overall spatial distribution
of features, while cross-entropy loss does not have enough
discriminant power among features. Therefore, it is better to
combine these two as follows:

Lua id = Lsoftmax + Ltriplet (3)

Uncertainty aware camera ID Loss: To tackle intraclass
variations arising from view angle, camera style, distance,
etc., we apply a soft-margin version of centroid triplet loss
since the class centroid can be considered as the mean repre-
sentation for the retrieval task. Inspired by the unreasonable
effectiveness of centroids in image retrieval [20], we propose
to calculate uncertainty-aware camera ID loss based on cen-
troids as follows:

Lua camid =
1

σ(xa)2
log(1+exp(f(xa, cn)−f(xa, cp))+

1

2
logσ(xa)

2, (4)

where cp and cn are the corresponding centroids of the class
for the positive and negative classes.

Uncertainty-aware Center Loss: We also analyze uncertainty-
aware center loss [22] using the following formula:

Lua center =
1

2σ

B∑
i=1

||fti − cyi
||22, (5)

where yi is the label of the ith image in a mini-batch and B
is the batch size. cyi is the center of deep features in the yith
class.



(a) Person (b) PVT-Large (c) Ours

Fig. 3: Visualization of feature maps using guided back-
propagation. Baseline PVT-Large [11] fails to retrieve fine
features, while ours captures more discriminative features.

The overall loss can be formulated as follows.

Ltotal = α1Lua id + α2Lua camid + α3Lua center (6)

Here, α1, α2, and α3 are the regularization parameters for the
corresponding losses.

3. EXPERIMENTS

3.1. Datasets
We have conducted our experiments on two aerial surveil-
lance datasets named Person ReID for Aerial Imagery (PRAI-
1581) [3] dataset and Vehicle Re-identification for Aerial Im-
age (VRAI) [4] dataset. PRAI is a newly released aerial
surveillance dataset which contains 39,461 person images of
1581 classes captured by two UAV drones with a flight alti-
tude ranging from 20 to 60 meters above the ground. VRAI
dataset consists around 137,613 images of 13,022 vehicles
taken by two UAV drones. This is the largest UAV based ve-
hicle dataset to date.

3.2. Implementation Details
For the PRAI dataset, the training set includes 19,523 images
from 782 classes. For the test set, the number of query and
gallery images are 4680 and 15258, respectively. For the
VRAI dataset, the training set contains 66,113 images with
6,302 classes. For the test set, the query set contains 15,747
images and the gallery set contains 55,753 images, respec-
tively. In our experiment, we investigated PVT, a multiscale
transformer, as the backbone network. The backbone network
is pre-trained on ImageNet 2012 dataset. We train our model
using 4 Titan 1080GTX GPUs. Before training, the images
are resized to 224× 224. The batch size is set to 128. ADAM
optimizer is used with a momentum of 0.9 and a weight decay
of 1e−4. The learning rate is initialized as 0.000015 with a co-
sine rate decay. For performance evaluation, we use two met-
rics: Cumulative Matching Characteristic (CMC) and mean
Average Precision (mAP).

3.2.1. Comparison with state-of-the-art

We compare our proposed approach with the latest methods,
and the results are reported in Table 1. Our proposed approach
outperforms the previous state-of-the-art in both the PRAI-
1581 and VRAI dataset, respectively. For the VRAI dataset,

Table 1: Performance comparison with state-of-the-art meth-
ods for PRAI-1581 and VRAI.

Method (Person ReID) Rank-1 mAP
PCB [7, 3] 47.47 37.15
SVDNet [23, 3] 46.10 36.70
MGN [9, 3] 49.64 40.86
OSNet [14, 3] 54.40 42.10
TransReID [1] 56.30 49.81
Ours 59.18 51.45
Method (Vehicle ReID) Rank-1 mAP
MGN [9, 4] 67.84 69.49
RAM (ResNet-50) [24, 4] 68.58 69.37
RAM (VGG-16) [24, 4] 72.05 57.33
Multi-task+DP [4] 80.30 78.63
TransReID [1] 82.68 81.48
Ours 84.47 82.86

our approach achieves 84.47% Rank-1 accuracy and an mAP
of 82.86%. For the PRAI dataset, the accuracy of Rank-1 is
59.18% and the mAP is 51.45%. We report results based on
single-query settings for both datasets. It is worth mention-
ing that the gain over previous SOTA methods is consistent
across object domains (person vs. vehicle) and performance
metrics (Rank-1 vs. mAP). The performances of our model
for mAP and different rank scores are presented in Figure 4
for the PRAI-1581 and VRAI data set. It can be observed
that PRAI is a lot more challenging than VRAI because of
people’s relatively smaller size, large pose variations, and de-
formable motion.

(a) CMC curve (b) mAP

Fig. 4: Performance of our model for PRAI-1581 and VRAI.
4. CONCLUSION

We have presented an uncertainty-aware multiscale transformer-
based approach for the UAV-based object Re-ID. Our ap-
proach captures the information of instances with different
levels of detail by multitasking PVT-based backbone archi-
tecture. The proposed model tries to solve object Re-ID as
multitask learning problem using a unified framework trained
with object ID, camera ID, and center loss. We quantita-
tively and qualitatively evaluated our proposed method on
two UAV-based aerial surveillance datasets. The experimen-
tal results demonstrate the superiority of the proposed model
over the previous state-of-the-art.
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