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ABSTRACT

Camera traps, unmanned observation devices, and deep learning-
based image recognition systems have greatly reduced human effort
in collecting and analyzing wildlife images. However, data collected
via above apparatus exhibits 1) long-tailed and 2) open-ended dis-
tribution problems. To tackle the open-set long-tailed recognition
problem, we propose the Temporal Flow Mask Attention Network
that comprises three key building blocks: 1) an optical flow mod-
ule, 2) an attention residual module, and 3) a meta-embedding clas-
sifier. We extract temporal features of sequential frames using the
optical flow module and learn informative representation using at-
tention residual blocks. Moreover, we show that applying the meta-
embedding technique boosts the performance of the method in open-
set long-tailed recognition. We apply this method on a Korean De-
militarized Zone (DMZ) dataset. We conduct extensive experiments,
and quantitative and qualitative analyses to prove that our method ef-
fectively tackles the open-set long-tailed recognition problem while
being robust to unknown classes.

Index Terms— Open-set Long-tailed Recognition, Temporal
Flow Mask Attention, DMZ Dataset, Camera Trap

1. INTRODUCTION

Recently, requirements for large-scale data collection and advanced
analytical techniques have led to an increased usage of camera
traps [1] — cameras equipped with motion sensors that can auto-
matically capture wild animals by detecting activity change in their
vicinity. Camera traps allow ecological researchers to collect animal
images with minimal disturbance to wildlife. At the same time,
high-quality image recognition systems actuated by advances in
deep learning have enabled researchers to analyze the natural behav-
ior of wildlife at considerably low costs and in short periods [2, 3].
Camera traps are crucial to nest ecology studies [4], identification
of threatened species [5], and research on habitat and occupation of
human-built structures [6].

However, despite tremendous advantages of the camera trap,
data collected from the camera traps entail two problems: 1) long-
tailed and 2) open-ended distribution of the dataset. By the na-
ture of the ecosystem, animal species in the wild are inherently in
a long-tailed distribution. For example, in the food chain, preda-
tors are fewer than prey. Moreover, there might be unseen species
classes that are not included in the dataset but exist in the real world.
For example, the camera trap may not capture animals in hiberna-
tion, elusive animals, or endangered species. In these situation, its
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image recognition system performance may be unfairly underesti-
mated. [7, 8, 9, 10]. A practical recognition system should be able
to accurately classify the head (majority) and tail (minority) classes
while being robust to the unseen class [11, 12, 13].

Existing studies investigating camera trap images tackle the
aforementioned data problems by focusing on constructing a suf-
ficiently balanced dataset for each class, applying a bounding
box [14], and transfer learning [15]. However, attempts to analyze
performance degradation caused by imbalanced data are insuffi-
cient [16, 17, 18]. Additionally, due to the open-ended nature of the
camera trap images, unknown data can adversely affect classifica-
tion performance [18]. Recent studies [1, 19, 20] show that detecting
unknown classes that have never been seen is crucial to monitoring
elusive and endangered species. Recent approaches address the
open long-tailed recognition problem with the conventional atten-
tion mechanism [21, 22, 23, 24]. However, they usually perform
poorly in camera trap setups where the illumination condition is
unstable, the capture space is limited to narrow areas, or the color of
the animal is similar to the background.

In this paper, we tackle the open-set long-tailed classification
problem using an optical flow-based convolutional attention net-
work, called the Temporal Flow Mask Attention Network (TFMA).
TFMA improves feature extraction by utilizing the correlation of se-
quential 3 frame images that fit the characteristics of the camera trap
dataset. The reference image and two optical flow maps provide the
location of the moving object, and through selective convolution,
the network can attend to a moving object [25]. Specifically, we
utilize PWC-net [26] pre-trained on the large synthetic dataset [27],
which is an optical flow estimation method that can be learned in
real-time end-to-end using CNN. Our dataset is composed of newly
collected camera trap images in the Korean Demilitarized Zone
(DMZ), namely the DMZ dataset. The dataset is characterized by
imbalanced distribution with various noises and it is consists of 12
classes including background and unknown classes. We collected
approximately 27,000 sets of 3 consecutive frames by the camera
trap image sensor that captures the movement of an object.

We verify the effectiveness of TFMA via comprehensive ex-
periments and ablation studies. The quantitative results show that
the proposed network can improve the class imbalance problem and
the overall classification accuracy even in an open-set environment.
Moreover, we show that applying the meta-embedding technique can
boost the performance of the method in open-set long-tailed recog-
nition. Also, qualitative results demonstrate the use of our network
can improve class discriminability.

2. METHOD

An overview of the proposed TFMA network is shown in Fig. 1.
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Fig. 1: Overview of Temporal Flow Mask Attention (TFMA) network.

2.1. Selective Convolution with Mask Operation in Attention
Residual Module

To enhance the selective convolution attention module using input
images t with temporal information, we extract the optical flow
(OF 1)t→t+1, (OF 2)t+1→t+2 from consecutive images t, t + 1,
t + 2 using PWC-net [26]. Before entering the attention resid-
ual block, input x is concatenated with temporal flow information.
x = concat(t, OF 1, OF 2). We define the binary step function as
a long-tailed estimator used in [25, 28], SB(x). The derivative of
SB(x) is defined as follows:

δSB(x)

δx
=

 2− 4|x|, -0.4 ≤ x ≤ 0.4
0.4, 0.4 ≤ |x| ≤ 1
0, otherwise

(1)

Then, mask operation M(x) used in selective convolution is de-
fined as:

M(x) = SB(φ(|x| − θ)− 0.5) , (2)

where θ is the learnable threshold parameter and φ is the sigmoid
function. With the mask operation M(x), input x is fed to the con-
volutional operation and is added with a skip connection as follows:

output = Conv(x) ∗M(x) + x . (3)

With this mask-guided attention module, every residual block is
updated with pruned mask weights using the back-propagation pro-
cedure. The attention module with optical flow temporal informa-
tion improves extracting representation in terrifically noisy camera
trap images as shown in Fig. 2.

2.2. Meta Embedding Classifier

After applying the Attention Residual module, we leverage Meta
Embedding Classifier [22] to fine-tune the performance of TFMA.
First, we construct the Concept Selector (FCS) and Hallucinator
(FH ) module with a simple fully connected layer. Given the out-
put feature vector vfeature and centroids of the training samples
{cj}Nj=1, where N is the number of classes, we obtain the memory
vector vmemory and selector vector vselector as follows:

vmemory =

N∑
j

FH(vfeature)jcj , (4)

vselector = tanh(FCS(v
feature)) . (5)

Fig. 2: Visualization of feature maps and mask attention of animals
in the Few class (e.g., endangered species, “moschiferus”).

Finally, vmeta combines the output feature and the memory vec-
tor with the selector vector. This combination function contributes
to fine-tuning the outliers of the samples in head and tail classes.

vmeta =
1

γ
· (vfeature + vselector � vmemory) , (6)

where � denotes the Hadamard product, and γ denotes the reach-
ability [29] to give weight to the distinction between open and tail
classes. To train the entire framework, we introduce three loss func-
tions, cross-entropy loss LCE , margin loss LM , and regularization
loss LR defined as follows:

LCE(v
meta
i , yi) =

yilog(C(vmeta
i )) + (1− yi)log(1− C(vmeta

i )) ,
(7)

LM (vmeta
i , {cj}Nj=1) =

ReLU

(
N∑
j

(1j=yi ||v
meta
i − cj || − 1j 6=yi ||v

meta
i − cj ||) +m

)
(8)

LR =

L∑
l

K∑
k

exp(−θlk) , (9)

where y is the class label, L is the number of convolution layers
and K is the number of channels in the l-th layer. The classification



performance is improved with the use of the cosine classifier C [30,
31] along with the cross-entropy loss LCE . The margin loss LM is
computed between centroids cj and samples vmeta

i and the margin
m is set to 10.0. Lastly, we penalize the learnable threshold θ of
the Attention Residual Module with the regularization loss LR. The
final loss function is defined as follows:

L =

S∑
i

(Li
CE + λ1Li

M ) + λ2LR , (10)

where S is the number of mini-batch samples, λ1 is set to 0.1, and
λ2 is set to 5e-6 via our preliminary experiments on validation set.

2.3. Open-set Recognition

Until recently, few OLTR studies investigated open-set and long-
tailed problems simultaneously [22]. Existing studies only address
either the closed-set long-tailed recognition or zero-shot recognition
problem. As a result, the evaluation protocols in the literature be-
come inconsistent [11, 12, 13]. In this study, using the OpenMax
function [32], which is typically used in open-set recognition, we in-
vestigate whether this challenging circumstance can be solved simul-
taneously. Specifically, using the OpenMax function, we compare
the open-set long-tailed classification performance with the weibull
cdf probability using the DMZ dataset that also includes unknown
classes. The activation score calculation is modified, but the total ac-
tivation level remains constant. As the threshold decreases from the
optimal value, the uncertainty on tail classes increases. This leads
OpenMax to reject more tail classes that are insufficiently learned.
Although this improves the confidence to predict the unknown class,
it can easily misclassify some tail classes to unknown classes [32].

By comparing the models with the well-known Receiver Oper-
ating Characteristics (ROC), the presented AUROC value indicates
the overall accuracy for the unknown class from estimates of all pos-
sible thresholds [33, 34]. This demonstrates that our model is highly
reliable and capable of minimizing the sensitivity-specificity trade-
off. In addition, our model reduces the variance of the intra-class and
increases the variance of the inter-class, thereby, ensuring robustness
despite degraded performance due to unknown.

3. EXPERIMENTS

3.1. Implementation Details

We perform experiments using the baseline — ResNet-18 [35] and
the OLTR [22]. We employ data augmentation with horizontal flip.
The input resolution is resized to 224×224. We train the model for
90 epochs using the SGD optimizer. The weight decay and learning
rate are set to 5e-4 and 0.1, respectively.

Fig. 3: Real-world open-set data distribution in the DMZ.

3.2. Open-set Long-tailed Dataset in DMZ

We collected raw images using the Reconyx HC600 camera trap in
the DMZ in collaboration with ecologists from the National Institute
of Ecology and scientists from the Anthropocene Research Center
of the Korea Advanced Institute of Science and Technology. Unlike
Park et al. [36] who focused on the imbalances between domains
by splitting the data by domains (e.g., RGB and IR), we expand and
reconfigure the dataset to consider a more general open-ended situ-
ation. We configured a mammalian dataset including 4 endangered
wild animal species (i.e., caudatus, moschiferus, flavigula, bengalen-
sis) belonging to the tail class in the DMZ. We classify 11 classes in-
cluding a background class as a closed set and 14 classes including
3 Unknown classes as an open-set. Training is carried out only in
the closed-set in which the training and testing datasets are split in a
7:3 ratio. In addition, using the day and night background classes of
10,000 photos, the network learns the background noise and camera
shake without objects; therefore, it is robust to domain changes and
classifies the background into the Many class. Also, similar to [36],
and because most of the image sequences were captured within the
identifiable range of the object motion (based on 3 photos), we con-
sidered the first 3 frames for each image sequence. Consequently,
approximately 27,000 images of 3 sequential frames were extracted.
The data sequence frequency distribution is shown in Fig. 3. The
open-set long-tailed distribution of our DMZ dataset is as follows:
Many Class (400 or more), Medium Class (100 to less than 400) and
Few & Unknown Class (less than 100).

3.3. Ablation Studies

We verify the performance of the proposed models under the data
configuration using real-world long-tailed circumstances.

Imbalanced Closed Test set Top-1 Acc. Many Medium Few

ResNet-18 [35] (only RGB) 91.41 94.05 74.97 36.61

OLTR [22] (only RGB) 91.81 94.34 75.10 41.53

O
ur

s TFMA 92.13 93.17 76.68 48.09
TFMA+meta-emb 92.85 94.53 77.21 53.01

Table 1: Comparison of model accuracies in an imbalanced dataset
with different settings (All vs. Many vs. Medium vs. Few classes).

Ablation studies on the closed test set: Long-tailed recognition.
The performance comparison results on the imbalanced closed test
set are shown in Table 1. From the table, the classification per-
formance of the ResNet-18 [35] is highly biased towards the Many
class, thereby, adversely affecting the classification performance for
the Few class. The OLTR [22] tries to solve the long-tailed prob-
lem by adding a modulated attention function and a meta-embedding
classifier function to ResNet-18, and, this technique tackles the data
imbalance problem of the DMZ dataset more effectively. In the cam-
era trap setup, however, the modulated attention module often fails to
capture the animal owing to extreme image noises (which can be ob-
served in the feature map of Fig. 2 (b)). This also suggests that the
DMZ dataset includes data imbalance and problems with the trap
images [37], such as camouflage, blur, close-up shot, fine-grained
species, occlusion, and parts only. In addition, when comparing the
feature maps & mask in Fig. 2 (c) and (d), the method of applying
spatial attention by thresholding only RGB images in the convolu-
tion layer focuses on background noise. To solve this problem, the



TFMA network utilizes the temporal feature extracted from the op-
tical flow of the object’s movement over time to increase attention to
the moving object, using the attention module.

The classification accuracy decreases by 1.17% in the Many
class of our TFMA model compared to the OLTR model, whereas
it increases by 1.58% and 6.56% in the Medium and Few classes, re-
spectively. However, although the classification accuracy decreases
a little in the Many class of our TFMA model compared to the OLTR
model, its accuracy for the tail classes increased significantly. In
addition, the classification accuracy of all Many classes can be im-
proved when the embeddings are fine-tuned using TFMA. Therefore,
when data are insufficient, it becomes robust against bias due to the
background noise by blending temporal information.

Ablation studies on the open test set: Unknown vs Known.

Open-set test AUROC

(Unknown vs. Known) Balanced Test set Imbalanced Test set

ResNet-18 (only RGB) 0.4536 0.5934

OLTR (only RGB) 0.6792 0.7766

O
ur

s TFMA 0.6788 0.8132
TFMA+meta-emb 0.7744 0.8845

Table 2: Comparison of AUROC in open-set recognition.

Fig. 4: ROC curve of open-set recognition with an imbalanced (left)
and a balanced (right) test set.

Since the accuracy of classifying an unknown class in open-set
recognition varies depending on the threshold value of the extreme
value distribution estimate of the classifier, we verify the reliability
of the model for open-set recognition through the ROC curve. As
the True Positive Rate (TPR) increases significantly compared to the
False Positive Rate (FPR) in the ROC curve, the reliability of the
model increases despite the trade-off between sensitivity and speci-
ficity. In other words, a classifier is known as a good classifier when
the curvature of the graph is closer to the upper left [20].

From Table 2, the overall performance is improved in the order
of the models proposed by AUROC, and the OLTR model classifies
unknown classes better than ResNet-18. However, despite using the
embedding function to reduce outlier bias, TFMA can still improve
the overall TPR without the embedding function. This is consistent
with existing papers that exclude classifier performance from long-
tailed recognition and still realize high-performance improvement
even with enhanced representation learning [12]. In addition, TFMA
fine-tuned with the meta-embedding technique achieves the same ex-
perimental results as previous papers on the importance of classifier
performance [8]. Suffice to say, appropriate fine-tuning, the repre-

sentation learning step, and the decoupling of the classifier improve
the effectiveness of a deep learning network in open-set long-tailed
classification. As shown in Fig. 4 (left), the ROC curve supports the
aforementioned results. Our model is robust to the threshold of the
OpenMax in an open-ended long-tailed distribution. Figure 4 (right)
shows the results when each class in the balanced testing dataset is
randomly composed of 18 images, which is the maximum number
of samples in the Few class. The dataset is a few-balanced sam-
ple, which makes data sampling highly biased. In this situation, the
distribution of the test samples becomes less representative, and the
classifier becomes more sensitive to hyperparameters; therefore, the
greater the distance from the optimal threshold, the more unreliable
the performance comparisons between the networks.

Nevertheless, the bottom-left part of the curves in Fig. 4 shows
that our model, with the embedding classifier, fine-tuned properly,
tends to maintain a stable TPR under rigorous conditions requiring
a low FPR owing to an extremely low threshold. Therefore, we con-
firm that TFMA+meta-emb is more reliable than its counterparts in
terms of handling the trade-off between sensitivity and specificity,
and can generalize well that ensures a relevant degree of TPR (i.e.,
sensitivity) performance.

Effect of Meta-embedding classifier.

Fig. 5: t-sne visualization: w/o (left). vs. w/ Meta-embedding.(right)

In Fig. 5, we show the effect of the embedding function by visu-
alizing the output embeddings via t-sne [38]. With meta-embedding,
TFMA learns a reasonable degree of similarity between each sample
and class. We see that the inter-cluster distinction is clearer and the
intra-cluster is compacter in (right) compared to (left), implying that
TFMA fine-tuned with meta-embedding generates a more distinctive
representation. By updating the parameters with knowledge distilla-
tion [13, 39], the meta-embedding classifier learns high-quality rep-
resentation, thus can generalize well even in the class imbalanced
and open-ended distributions.

4. CONCLUSION

To tackle the open-set long-tailed recognition problem, we propose
a Temporal Flow Mask Attention (TFMA) network composed of
three key components: an optical flow module, an attention residual
module, and a meta-embedding classifier. TFMA utilizes temporal
information extracted from consecutive frames to adaptively learn
attentive representation and predicts the final outputs via a meta-
embedding classifier. We applied TFMA to a dataset collected from
the DMZ region that consisted of two problems: 1) long-tailed and
2) open-ended distributions. To verify the reliability of TFMA on
an open long-tailed setup, we conducted extensive experiments and
analyses. The experimental results demonstrate that our model not
only improves recognition performance on the tail class but is also
robust to the unknown class.
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