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ABSTRACT
In real world scenarios, out-of-distribution (OOD) datasets
may have a large distributional shift from training datasets.
This phenomena generally occurs when a trained classifier
is deployed on varying dynamic environments, which causes
a significant drop in performance. To tackle this issue, we
are proposing an end-to-end deep multi-task network in this
work. Observing a strong relationship between rotation pre-
diction (self-supervised) accuracy and semantic classification
accuracy on OOD tasks, we introduce an additional auxiliary
classification head in our multi-task network along with se-
mantic classification and rotation prediction head. To observe
the influence of this addition classifier in improving the rota-
tion prediction head, our proposed learning method is framed
into bi-level optimisation problem where the upper-level is
trained to update the parameters for semantic classification
and rotation prediction head. In the lower-level optimisation,
only the auxiliary classification head is updated through se-
mantic classification head by fixing the parameters of the se-
mantic classification head. The proposed method has been
validated through three unseen OOD datasets where it ex-
hibits a clear improvement in semantic classification accuracy
than other two baseline methods. Our code is available at
https://github.com/harshita-555/OSSL

Index Terms— out of distribution, self-supervised learn-
ing, auxiliary classifier

1. INTRODUCTION

In machine learning community, benchmarks like ImageNet
[1], CIFAR [2] etc. are commonly used to know the general-
ization ability of classifiers, where we assume that the test
time input distributions are the same as the training distri-
bution. However, when classifiers are applied to real-world
applications like product recommendation, medical diagno-
sis, autonomous driving, they may face complex and dynamic
shifts in the data distributions. Besides, new objects can be
exposed to the classifiers at any time. Such issues in out-of-
distribution (OOD) datasets may lead to catastrophic failure
of the classifiers. In addition, annotations of test samples are

not provided in many cases. Under such environment, clas-
sifiers’ performance is usually evaluated by collecting new
labeled test sets. Nonetheless, labeling adequate images in a
novel scenario is very complex and highly expensive. To min-
imize such labeling cost, researchers have investigated vari-
ous approaches for evaluating classifiers’ performance on un-
labeled test sets. Some researchers have developed complex-
ity measurements on model parameters to analyse generaliza-
tion of the classifiers [3–5].

Researchers have proposed various methods to deal with
OOD examples. For instance, probabilities from softmax
distributions are utilized in [6] to detect wrongly classified
and OOD examples. They have shown that OOD exam-
ples have a lower prediction probability than that of correct
or in-sample examples. Researchers have also used self-
supervision method [7,8] to handle OOD tasks by introducing
an auxiliary task that supports to create labels from unlabeled
samples. In [7], they classified four different rotation angles
of an image at {0◦, 90◦, 180◦, 270◦} to pay attention to the
pretext task of rotation prediction. They jointly trained their
network for both classification task and pretext task using
CIFAR-10, MNIST, Tiny-ImageNet, and COCO, where they
studied the correlation between those two task’s accuracy.
By considering many labeled testsets and plotting classifica-
tion verses rotation prediction accuracy, a strong correlation
(Pearson’s Correlation r > 0.88) is witnessed between those
accuracies. Based on such finding, they learnt a linear re-
gression model, which can predict classification accuracy on
unseen test sets. They obtained ground truths from a given
unlabeled test set by rotating images manually. It has been
used to calculate the rotation prediction accuracy on the test
images using the multi-task network. Afterward, this rotation
prediction accuracy is used by the linear regression model to
predict the semantic classification accuracy.

Unlike the earlier work, in this work, we mainly focus
on improving rotation prediction accuracy (self-supervised
learning) using an auxiliary classifier for out of distribution
task, which ultimately improves the semantic classification
accuracy. Therefore, our proposed approach can be for-
mulated as a bi-level optimization problem [9], where the
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Fig. 1. Proposed multi-task network structure for improving
only the accuracy of rotation prediction via auxiliary classifier

rotation head and semantic classification head are learnt in
the upper level. On the other hand, auxiliary classification
head is learnt through the semantic classification head with-
out updating the semantic classifier parameters in the lower
level as shown in Fig. 1. Since better rotation prediction
accuracy indicates the model’s higher ability to capture OOD
features, we designed our multi-task architecture by focusing
to maximize the performance of the rotation prediction head.

Major contributions in this work can be stated as follows:

• We propose a joint end-to-end multi-task framework
called ’only self-supervised learning (OSSL)’ for han-
dling unseen OOD test sets.

• We formulate the problem in a bi-level optimization
fashion so as to improve semantic classification perfor-
mance by maximizing the rotation prediction accuracy
via an auxiliary classifier.

• Our proposed framework has been validated using three
unseen OOD data sets, where a better semantic classi-
fication accuracy have been witnessed in contrast with
the baselines.

2. PROPOSED METHOD

In this paper, we have utilized a held-in training set and an
unseen OOD test-set. We define the given training set as
Dtrain = {(xk, yk)}Nk=1 ∈ (X × Y ) where, xk ∈ X is the
k-th training image and yk = {0, 1, ..., C − 1} ∈ Y cor-
responds to target variable spanning over C classes. N is
the total number of samples present in the training dataset
Dtrain. The OOD test set is defined in a similar fashion,
Dtest = {(xl, yl)}Ml=1 where yl is target variable spanning
over C classes. Given a set of observation (xk, yk) ⊆ (X,Y )
drawn from a joint distribution (xk, yk) ∼ PXY , our objective
is to design a robust classifier that can maximise classification
accuracy for unseen OOD test-set.

2.1. Multi-task learning

Researchers have observed in [10] that a higher accuracy in
rotation prediction indicates a model’s superiority in captur-
ing representation of learned features in lower dimensional
manifold. Though they followed a completely unsupervised
learning strategy, they did not consider the OOD task. In re-
cent times, similar method has been developed to deal with
OOD problem [7], where a linearly proportional relationship
between rotation prediction and semantic classification has
been observed. However, their proposed two-stage method
can not provide an end-to-end solution. Besides, there are
few questions that still remains in the end-to-end method.

• If rotational head estimates OOD classification accu-
racy perfectly, then how do we maximise the rotational
head accuracy under multi-tasking learning frame-
work?

• How do we get end-to-end solutions for predicting
OOD downstream task?

2.2. How to maximise the self-supervision (rotational-
accuracy) task?

Network details: To attain this objective, a multi-task learn-
ing framework has been developed for semantic classifica-
tion along with self-supervised (rotation prediction) task. We
utilise the multi-head network along with the same base net-
work. Utilization of such multitasking framework is not en-
forcing more complexity while improving the self-supervised
task. To maximise the self-supervised performance on base-
network, we introduce an auxiliary classifier along with se-
mantic classifier head and self-supervised (rotation predic-
tion) head. These minimal changes will not increase the bur-
den on the base-network. For the base (feature extraction)
network, we have taken a convolution neural network (e.g.
densenet)followed by three fully connected layers for three
different tasks. As depicted in Fig 1, the base feature extrac-
tor is parameterised by θb. All the remaining task-specific
classification head are described as follows,

• semantic-classification prediction head is parame-
terised by θsc.

• rotation prediction head is parameterised by θss.

• auxiliary semantic classification head is parameterised
by θsa.

Rotational prediction head: We follow the similar rota-
tion transformation as in [7, 10]. The four geometrical rota-
tional transformations are applied to a train image(x), F =
{Gr(x)}, where Gr is the geometrical rotation function with
four rotation angles r = {0◦, 90◦, 180◦, 270◦}. This geo-
metrical transformation can not alter the invariant nature [11].



Therefore, the rotational head can predict rotational accuracy
by 4-ways.

Loss functions: The proposed OSSL method is associ-
ated with three individual classifications losses for three dif-
ferent tasks. The semantic classification loss is defined as
follows,

Lch = CE(yc, θsc(θb(x))) (1)

where CE = − 1
N

∑N
yc=1 yc log(θsc(θb(x)))

The rotation prediction classification loss is defined as fol-
lows,

Lrh =
1

4

∑
r∈{0◦,90◦,180◦,270◦}

CE(yr, θss(θb(Gr(x)))) (2)

where, yr is represented as one-hot-encode labels for all four
rotational.

The semantic auxiliary classification loss is defined as fol-
lows,

Lah = CE(yc, θsa(θb(x))) (3)

We have utilized the above three losses into a bi-level optimi-
sation problem to maximise the self-supervision performance.
In upper-level optimisation, the semantic classification head
and rotation classification head parameters are learnt simul-
taneously to update the base-network parameters as well as
corresponding task specific class parameters, where the ob-
jective can be expressed as follows:

min
θb,θsc,θss

Lupper (4)

where Lupper = (Lch + Lrh). This upper level optimiza-
tion problem is solvable with the stochastic gradient descent
(SGD) method where it first tunes the parameters of both the
task specific classifiers:

{θsc, θss, θb} = {θsc, θss, θb}− lr
∑
Dtrain

∇{θsc,θss,θb}Lupper

(5)
where lr is the learning rate of the upper-level loop.

Similarly, in lower-level optimisation, the objective can
be expressed as follows:

min
θb,θsa

Llower (6)

where Llower = (Lch − Lah). As similar to upper level, the
SGD method is used to optimize only the parameters of the
auxiliary head and base network:

{θsa, θb} = {θsa, θb} − lr
∑
Dtrain

∇{θsa,θb}Llower (7)

where, the same lr is being used to nullify the effects of se-
mantic classification head in the backward path. However, the
semantic classification head parameters (θsc) remain fixed.
For clarification, the proposed OSSL framework’s learning
strategy is given in Algorithm 1.

Algorithm 1 Learning Strategy of OSSL

1: Input: training dataset Dtrain, testing dataset Dtest,
learning rates lr, iteration numbers nepoch

2: Output: parameters of all the four networks {θb, θsc, θss, θsa},
3: for p = 1 to nepoch do
4: Update {θsc, θss, θb} parameters by using equation

(5) /* upper level optimisations/*
5: Update {θsa, θb} parameters by using equation (7)

when θsc is fixed /* lower level optimisations/*
6: if p ≥ 49& p% 10 == 0 then
7: calculate testing accuracy for Dtest

8: end if
9: end for

3. EXPERIMENTS AND VALIDATION

In this paper, our proposed OSSL method has been compared
with two other baseline methods associated with two differ-
ent losses, where the parameters of the first baseline is up-
dated through semantic classification loss(Lch) and the sec-
ond one is updated through semantic classification with rota-
tional head losses (Lch +Lrh). For experimental validations,
two popular classification benchmark data sets have been con-
sidered to train the model such as: digits (MNIST) and natural
image (CIFAR-10) data set. For both data sets, three different
unseen OOD test-sets have been utilised to evaluate the model
prediction accuracy.

The LeNet-5 [12] model is a popular architecture for clas-
sifying the digit datasets (MNIST). Therefore, we consider
LeNet-5 as a base feature extractor along with three classifi-
cation heads. Original MNIST dataset is applied to train the
model parameters, but, two different unseen OOD data sets
namely USPS [13] and SVHN [14] are used to test it. Be-
sides, both the unseen test-sets are having same number of
classes(10) as in the training set. Therefore, it is practical to
use these data sets as unseen OOD test-sets. On top of the
backbone feature extractor i.e. LeNet-5, three tasks specific
fully connected layers are being used. In addition, to anal-
yse the effectiveness of the proposed method in a complex
dataset, Densenet − 40 (40 layers) architecture [15] is ap-
plied as a backbone feature extractor. In this case, CIFAR-
10 is used to train the model, whereas CIFAR − 10.1 is
utilized as an unseen test-set to evaluate the model perfor-
mance. CIFAR-10.1 is a popular benchmark dataset for the
OOD classification task where collected test-set samples dis-
tributional shift cannot vary too much compared with the orig-
inal CIFAR -10 samples [16, 17]. Moreover, CIFAR-10.1
dataset samples are subset of the Imagenet [18] dataset sam-
ples.

Table 1 represents the quantitative performance compar-
ison for different unseen test-sets. For a fair comparison
among these methods, the same base extractor is consid-
ered for all cases. For digit classification problem, original



Table 1. The quantitative classification performance for un-
seen OOD test-set. While the base model is trained with
held-in digit datasets, USPS and SVHN are being used as
unseen(held-out) test sets. For CIFAR-10 train set, CIFAR
10.1 is used as unseen test-set. The reported classification
accuracy is given in %

Trainset MNIST CIFAR 10
unseen OOD test-set USPS SVHN CIFAR 10.1

Lch 60.85 22.25 83.30
Lch + Lrh 64.82 19.74 85.05

OSSL 65.22 21.09 86.90

MNIST train-set is used to train the model. The obtained
baseline classification performance (considering Lch) for
USPS testset is 60.85%. A significant improvement in per-
formance has been observed when rotation prediction loss is
considered along with semantic classification loss. However,
our proposed OSSL method has obtained best classifica-
tion accuracy compared with the above two methods. The
obtained classification accuracy is 65.22%. However, for
SVHN test-set, the best obtained accuracy is 22.25%, which
is from baseline when using only classification head. A
significant performance drop is observed while considering
the rational prediction head along with classification head.
However, OSSL has obtained better model accuracy than
the rotational head prediction, but it cannot outperform the
baseline. Large distributional shift in the unseen SVHN test
set samples compared to the held-in train set [19] could be
the main reason for such performance deterioration. Such
large distributional shift in dataset can’t be represented by
geometrical rotation with given held-in train-set. As a result,
the classification performance is declined under multi-tasking
learning framework.

In addition, we have considered a complex CIFAR-10
dataset, where more complex network architecture has been
utilised as a baseline. It is clearly observed from the Table 1,
the proposed OSSL has outperformed the other two methods.
While considering only classification head, the obtained ac-
curacy is 83.30%. A performance improvement in accuracy
has been observed by considering both classification head and
rotation prediction head, where the obtained classification ac-
curacy is 85.05%. The proposed OSSL method has attained
best classification accuracy among all the three methods and
the accuracy is 86.90%.

3.1. tSNE analysis

In this work, tSNE analysis [20] is utilized to investigate the
discriminative ability among different class distributions of
our proposed methods and baselines as well. We consid-
ered test sets from CIFAR-10.1 dataset to project the origi-
nal feature space to a two-dimensional space. In contrast to
baselines, an effective separation among different classes is

(a) (b)

(c)

Fig. 2. tSNE analysis on CIFAR-10.1 dataset using (a) base-
line with Lch, (b) baseline with Lch + Lrh, (c) proposed
OSSL, where different classes are marked by digits (from 0
to 9)

witnessed from OSSL as expected, where these classes are
marked in different colors as shown in Fig. 2. Such outcomes
are also confirming that our proposed method can extract dis-
criminative information from OOD datasets.

4. LIMITATIONS

The proposed OSSL method has focused on the maximisa-
tion of rotation prediction performance, which consequently
improves the semantic classification accuracy. However, for
some OOD datasets, incorporation of rotation prediction head
along with a single semantic classification head can’t guaran-
tee to estimate a good performance on unseen test-set. As a
consequence, rotation prediction head can influence the se-
mantic classifier negatively and its performance can deterio-
rate. It may happen due to the sharing of common features by
two classification heads. Moreover, the under-laying assump-
tion is that rotation prediction head-based OOD task has to be
well-defined and significant [8]. Otherwise, rotational predic-
tion head can’t capture the significant features. For instance,
from the SVHN dataset, a large distributional shift has been
observed between training and testing dataset. In such case,
though the proposed OSSL performs better than rotation pre-
diction head and single semantic classifier-based method, it
can not ensure its improvement over baseline.



5. CONCLUSION & FUTURE WORKS

This paper presents a joint learning strategy to improve clas-
sification performance for unseen OOD downstream task. For
any OOD datasets, when a strong correlation is observed be-
tween rotation prediction accuracy and semantic classification
accuracy, then we can maximise the rotation accuracy to ob-
tain better semantic classification performance. To attain this
objective, we formulated a bi-level optimisation framework
where an additional auxiliary classifier was introduced to nul-
lify the impact of semantic classification head on base-feature
extractors. The proposed OSSL method has been validated
through three unseen OOD datasets. A significant improve-
ment in classification performance is observed than the two
other baselines. Some of the possible future directions utiliz-
ing our proposed learning strategy can be stated as follows

• To put a set of penalties for different dynamic test envi-
ronments through invariant risk minimisation principle
for handling large distributional shifts [21].

• For handling class imbalance problem, a latent pre-
serving GAN [22–24] can be used to generate minority
class samples in dynamic tests environments.

• To handle adversarial robustness through maximising
the rotation prediction accuracy [25].
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