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ABSTRACT

In recent years, digital humans have been widely applied in
augmented/virtual reality (A/VR), where viewers are allowed
to freely observe and interact with the volumetric content.
However, the digital humans may be degraded with various
distortions during the procedure of generation and transmis-
sion. Moreover, little effort has been put into the perceptual
quality assessment of digital humans. Therefore, it is urgent
to carry out objective quality assessment methods to tackle
the challenge of digital human quality assessment (DHQA).
In this paper, we develop a novel no-reference (NR) method
based on Transformer to deal with DHQA in a multi-task
manner. Specifically, the front 2D projections of the digi-
tal humans are rendered as inputs and the vision transformer
(ViT) is employed for the feature extraction. Then we design
a multi-task module to jointly classify the distortion types and
predict the perceptual quality levels of digital humans. The
experimental results show that the proposed method well cor-
relates with the subjective ratings and outperforms the state-
of-the-art quality assessment methods.

Index Terms— Digital human head, Textured mesh,
Quality assessment, No-reference, Multi-task learning

1. INTRODUCTION

Digital humans are virtual characters with human images, hu-
man characters, and behavioral characteristics simulated by
computers, which are regarded as the entrance to the meta-
verse. Thanks to the rapid development of computer graph-
ics, digital humans have been gradually integrated into peo-
ple’s lives in many fields such as film industry, social media,
tourism, etc. Unfortunately, as shown in Fig. 1, because the
digital human models presented to viewers are often stored as
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Fig. 1. The generation of distortions. During the generation
process of the digital humans, the jitter of the laser sensor
and the thermal noise of devices can introduce geometry shift
and noise to the digital human models. To meet the real-time
needs of practical application scenarios where the transmis-
sion bandwidth is usually limited, the models are inevitably
processed with compression, downsampling or simplification.

textured meshes, whose geometry and color information are
separately saved, many procedures may lead to the generation
of distortions, which may severely damage the visual quality
of digital humans. Therefore, it is important to carry out ob-
jective DHQA methods to optimize the transmission system
and improve the quality of experience (QoE).

Reviewing the development of 3D quality assessment
(3DQA), many quality assessment metrics [1–8] as well
as 3DQA databases [1, 2, 4, 9] have been proposed. For
3DQA, the mainstream quality assessment methods can be
divided into two categories: model-based methods [1–3] and
projection-based methods [4, 5]. Specifically, the model-
based method gives a quality score by calculating the dis-
tance between discrete points as a similarity measure. The
projection-based method, on the other hand, projects the 3D
model from different viewpoints and obtains the quality score
of the model by evaluating the quality of the projection.

In this paper, we mainly focus on the evaluation of digi-
tal human head (DHH), which is the most concerned part of
digital humans. In most practical occasions, DHHs are es-
sential for representing facial features and expressions, the
perceptual quality of which directly affects the perceptual
quality of digital humans. In addition, NR method is more
valuable for practical applications and its research is more
challenging because in many practical situations, we do not
have access to the original reference model. Therefore, we
propose a Transformer-based NR digital human head quality
assessment (DHHQA) method in a multi-task manner. The
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Fig. 2. The framework of the proposed NR DHHQA model.

Fig. 3. Illustration of the projection process.

proposed NR DHHQA method includes three modules: the
projection module, feature extraction module and multi-task
module. First, the projection module renders the front-side
projections of the DHHs as inputs. Then, we select ViT [10]
as the feature extraction backbone and realize the effective ex-
traction of quality-aware features. Finally, we get the quality-
aware embedding by average pooling. In the design of the
multi-task module, we divide the quality assessment prob-
lem into two sub-tasks to promote the model to enhance un-
derstanding, focus attention and share feature information.
Sub-task I classifies a DHH model into a specific distortion
category. Sub-task II predicts the perceptual quality. The
two sub-tasks share image features and together constitute
the multi-task module. To analyze the performance of the
proposed method, we select the DHHQA database [11] for
validation. The experimental results show that the proposed
method achieves the best performance in the prediction accu-
racy of the quality scores, benefiting from the introduction of
the multi-task module.

2. PROPOSED METHOD

In this section, we describe our proposed NR DHHQA
method in detail. The framework of the method is shown in
Fig. 2, which contains three modules: the projection module,
feature extraction module and multi-task module. The projec-
tion module captures front-side projection of the DHH. Then
the ViT is employed to extract the quality-aware features from
the projection. Finally, the features are regressed into quality
values and distortion categories by the multi-task module.

2.1. Projection Module

The projection module selects the front-side projection of the
DHH because the front projection contains more facial fea-
tures and details that most affect the perceptual quality. Given
a DHH represented by a textured mesh, the geometry mesh
structure M can be defined as:

M ∈ {{v|v ∈ V }, {n|n ∈ N}, {e|e ∈ E}}, (1)
where V , N , E represent the set of the vertices, normal vec-
tors and edges of the mesh respectively. The geometry center
of the mesh can be calculated as:

CM = 1
N

N∑
i=1

vi, (2)

where N denotes the total number of vertices and CM denotes
the center coordinates of DHH model. As shown in Fig. 3, we
use random region proposal to get input patches as P .

2.2. Feature Extraction Module

In view of the popularity and success of the Transformer ap-
plied to computer vision tasks, the proposed method uses
ViT [10] as the feature extraction backbone. The architecture
of ViT we use is a Transformer Encoder structure consisting
of n blocks stacked on top of each other. Before entering the
Encoder, ViT first takes the P and further divides them into
smaller patches. Next, we extract the feature maps of the ViT
encoder output, and the process can be described as:

F = V iT (P ), (3)
where V iT (·) denotes the process of feature extraction using
ViT as the backbone and F represents the feature maps out-
put from the ViT network. Next, the extracted feature maps
are computed by average pooling to obtain a quality-aware
embedding, and the process can be expressed as follow:

F = Avg(F ), (4)
where F denotes the final extracted features of the feature
module, and Avg(·) denotes the operation of average pooling.



2.3. Multi-Task Module

Specifically, the quality assessment problem is divided into
two sub-tasks with the aim of enabling the method to perform
the classification task while introducing additional quality in-
formation to improve the prediction accuracy of the quality
scores. Sub-task I classifies a DHH model into a specific dis-
tortion category. Sub-task II predicts the perceptual quality.
The two sub-tasks share image features and jointly optimize
the network parameters to improve the performance of the vi-
sual perception task.

After extracting features with perceptual quality signifi-
cance, we use fully connected (FC) layers to aggregate them
into quality scores for DHHs. For the classification task, we
obtain the category probabilities by a two-layer FC layer con-
sisting of 128 neurons and Nd (Nd denotes the number of dis-
tortion categories) neurons which represent the possibilities
belonging to each category. For the regression task, the qual-
ity scores are derived from two FC layers consisting of 1024
neurons and 1 neuron respectively. Specifically, the process
can be described as:

ĉ = α(F ),

q̂ = β(F ),
(5)

where ĉ, q̂ are the distortion categories and quality scores pre-
dicted by the model respectively, α(·), β(·) denote the re-
gression of Sub-task I and Sub-task II respectively. In both
tasks, we use the mean squared error (MSE) as the loss func-
tion. Thus, for the whole network, the loss function can be
expressed as:

Loss =
1

Ns

Ns∑
i=1

(λ∥ĉi − ci ∥2 + ∥q̂i − qi ∥2), (6)

where Ns is the number of samples in the mini-batch, ci ,
qi denote the ground truth distortion categories and quality
scores respectively, and λ is a coefficient factor that is used
to subjectively adjust the relative importance of the classifica-
tion task and the regression task.

3. EXPERIMENT EVALUATION

3.1. Experiment Details.

The proposed method is validated on DHHQA database con-
sisting of 1,540 digital human head distortion projections.
The database collects 55 scanned models of digital human
heads and introduces seven distortions on the 3D models.
Each distortion provides four different distortion levels and
corresponding mean opinion scores (MOS). To test the gener-
alization ability of the model, five-fold cross-validation strat-
egy is employed. Specifically, we split the database into 5
folds and each fold contains 11 groups of DHHs. Then we
select 4 folds for training and leave 1 fold for testing. Such
process is repeated 5 times so that every fold has been used for
testing. The average performance of the 5 folds is recorded as

the final results. It’s worth mentioning that there is no content
overlap between the training and testing sets. The selected
ViT backbone which contains 12 Transformer Blocks is pre-
trained on ImageNet-21k [12]. The Adam optimizer [13] with
an initial learning rate of 1e-5 is utilized. The default number
of training epochs and batch size are set as 50 and 30 respec-
tively. We split the dataset into five folds, and calculate the
average of the above evaluation criteria as the final perfor-
mance.

3.2. Experiment Criteria.

We compared the proposed method with ten NR IQA meth-
ods, including BRISQUE [14], CPBD [15], IL-NIQE [16],
NFERM [17], NFSDM [18], NIQE [19], DBCNN [20],
StairIQA [21]. Among these ten NR IQA methods, CPBD,
IL-NIQE, and NIQE do not require training. Besides, we
also include the performance of some classic full-reference
point cloud quality assessment (FR PCQA) methods such
as p2point [22], p2plane [23] and psnr-yuv [24] through
converting the DHHs from textured meshes to point clouds.
The default experimental setup is maintained for the rest of
the compared methods.

To compare the performance of these methods in the
assessment of the visual perceptual quality of the digital
human head, we use four commonly used evaluation criteria
to evaluate different NR IQA methods, namely, Spearman
rank order correlation coefficient (SRCC), Pearson linear
correlation coefficient (PLCC), Kendall rank order correla-
tion coefficient (KLCC), and root mean square error (RMSE).

3.3. Performance Comparison with Other Methods

The experimental results on the DHHQA database are ex-
hibited in Table 1. From Table 1, we can see that the pro-
posed method outperforms the other NR IQA metrics and
leads by a significant margin (better than the second-place
method StairIQA by 12.20%). Firstly, this indicates that the
proposed method is much more effective than the NR IQA
based on handcrafted extracted features in assessing the qual-
ity of DHH models. It can be explained that most methods
based on handcrafted extracted features are mainly designed
for natural scene statistics (NSS). However, the rendered im-
ages are not necessarily subject to the prior distribution of
NSS. Besides, in allusion to the fact that the proposed method
outperforms some deep-learning based NR IQA methods, we
speculate that the multi-task module can obtain more quality-
aware information derived from the classification of distor-
tion, which promotes the improvement of the performance.
Finally, the classic FR PCQA methods are not effective for
DHHQA task. It can be explained that these classic FR PCQA
methods are not suitable for dealing with relatively more com-
plicated models.



Table 1. Performance comparison of different methods. The
best performance results are marked in RED and the second
performance results are marked in BLUE.

Type Method SRCC↑ PLCC↑ KRCC↑ RMSE↓

FR
MSE-p2ponit 0.2891 0.29116 0.2359 21.0813
MSE-p2plane 0.2698 0.2961 0.2250 21.0502

psnr-yuv 0.1761 0.2272 0.1369 21.4299

NR

BRISQUE 0.6008 0.5958 0.4214 17.3669
CPBD 0.2621 0.2599 0.1718 20.6701

IL-NIQE 0.5419 0.6232 0.3825 17.4119
NFERM 0.6414 0.6876 0.4610 15.4528
NFSDM 0.5921 0.6598 0.4214 16.1233

NIQE 0.4232 0.4410 0.2784 18.9814
DBCNN 0.7575 0.8238 0.5723 12.0087
StairIQA 0.8052 0.8271 0.6123 11.8403
Proposed 0.9272 0.9275 0.7711 7.4662

Table 2. Performance of two models for ablation study. I
indicates the Sub-task I and II indicates the Sub-task II. The
best performance results are marked in BOLD.

I II SRCC↑ PLCC↑ KRCC↑ RMSE↓ ACC↑
✕ ✓ 0.9167 0.9173 0.7451 7.7209 -
✓ ✓ 0.9272 0.9275 0.7711 7.4662 0.9732

3.4. Ablation Experiments

In this section, to further validate the effectiveness of multi-
task learning, we conduct the following ablation experiments.
We set up two groups of models for comparison. One group
is the baseline model based on ViT which only includes the
Sub-task II, and the other group is the ViT model with multi-
task module which can realize the Sub-task I and Sub-task II.
The default experiment setup is maintained and the results of
the two groups of models are shown in Table 2. As can be
seen from Table 2, the multi-task module enables the model
to obtain better performance than the baseline model in visual
quality perception, indicating that the involvement of the Sub-
task I can help improve the model’s understanding of visual
quality for DHHs.

3.5. Performance Comparison of Different Backbones

We compare the performance of three popular backbones,
ResNet50 [25], MobileNetV2 [26], and ViT [10]. The perfor-
mance of the three backbones is exhibited in Table 3. From
Table 3, we can see that MobileNetV2 yields similar perfor-
mance compared with ViT and conclude that firstly, our pro-
posed method is still valid on a lightweight platform. Second,
ViT achieves the best performance on the regression task of
visual perception while maintaining about the same accuracy
of distortion classification as ResNet50, further demonstrat-
ing the rationality of selecting ViT as the backbone.

To further discuss the performance of different backbones.
We record the process of training the same fold time for three

Table 3. Performance comparison of different backbones.
MNV2 indicates the MobileNetV2. The best performance re-
sults are marked in BOLD.
Backbone SRCC↑ PLCC↑ KRCC↑ RMSE↓ ACC↑

MNV2 0.9086 0.9043 0.7331 9.0336 0.9442
ResNet50 0.9210 0.9165 0.7519 8.4616 0.9669

ViT 0.9272 0.9275 0.7711 7.4662 0.9732

(a) SRCC performance (b) ACC performance

Fig. 4. Different backbone training process.

backbones and the result is shown in Fig. 4. From Fig. 4(a) we
can conclude that our proposed method converges faster and
better when dealing with the regression task of visual percep-
tion compared to ResNet50 and MobileNetV2. Moreover, ac-
cording to Fig. 4(b), it can be seen that ViT converges slower
in the first few training rounds when dealing with the clas-
sification task, but with the increase of the num of epochs,
it also eventually gets about the same or even better perfor-
mance than ResNet50. In response to this result, we specu-
late that: CNN has a stronger feature extraction ability and
is more likely to capture the difference between various dis-
tortions; while attention-based ViT is better at global visual
quality perception from a broader view.

4. CONCLUSION

In this paper, we propose a novel Transformer-based NR
3DQA multi-task method for DHHQA. In order to reduce the
computational cost of the method, we first record the front-
side projection of the DHH model and crop the projection
into patches. Then, we use ViT to perform feature extraction
on the patches to obtain quality-awareness features. Specifi-
cally, we use the average pooling to process the output feature
maps and then obtain the final quality-awareness embedding.
Finally, the multi-task module is involved to regress quality-
awareness embedding into quality scores as well as distortion
classification respectively. The experimental results show that
the proposed method significantly outperforms other meth-
ods on DHHQA and achieves competitive performance on
the classification task, which validates the effectiveness of the
proposed method for predicting the visual quality of DHHs.
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