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ABSTRACT

Existing high-resolution satellite image forgery localization
methods rely on patch-based or downsampling-based train-
ing. Both of these training methods have major drawbacks,
such as inaccurate boundaries between pristine and forged re-
gions, the generation of unwanted artifacts, etc. To tackle the
aforementioned challenges, inspired by the high-resolution
image segmentation literature, we propose a novel model
called HRFNet to enable satellite image forgery localization
effectively. Specifically, equipped with shallow and deep
branches, our model can successfully integrate RGB and re-
sampling features in both global and local manners to localize
forgery more accurately. We perform various experiments to
demonstrate that our method achieves the best performance,
while the memory requirement and processing speed are not
compromised compared to existing methods.

Index Terms— Forgery Detection, High-Resolution Im-
age, Image Manipulation, Satellite Image

1. INTRODUCTION

The advent of satellites equipped with advanced imaging
technology has enabled a wide range of applications that uti-
lize satellite imagery, such as agricultural crop classification
[1], wildlife monitoring, etc. Concurrently, the proliferation
of image and video editing software, along with advanced AI
techniques such as deepfakes [2, 3], has led to the creation of
fake images. Consequently, image forgery has emerged as a
significant socio-technical concern. Satellite images are also
susceptible to manipulation using these tools, highlighting
the need for automated methods to detect tampered areas.
However, accurately identifying tampered areas with differ-
ent types of forgery (including splicing, copy-move, removal,
etc.) remains highly challenging.

Typically, satellite images are high-resolution images
with large spatial sizes. On the other hand, existing general-
purpose image forgery localization methods are designed for
lower-resolution images. Therefore, using these methods
directly on high-resolution satellite images is not feasible
due to resource constraints. To address this issue, several
approaches [4, 5, 6, 7] specifically targeting satellite image

forgery localization have been proposed. These approaches
often involve patch extraction from the satellite image or
downsampling the high-resolution image before inputting it
to the forgery localization network for segmentation.

However, such approaches have their limitations. Chen
et al. [8] have shown that patch-based or downsampling-
based training for the segmentation of high-resolution im-
ages has major drawbacks. Specifically, patch-based train-
ing lacks spatial contexts and neighborhood dependency in-
formation, making it difficult to distinguish between different
classes. On the other hand, downsampling-based training suf-
fers from “jiggling” artifacts and inaccurate boundaries due
to the missing details from downsampling. To further tackle
these challenges and facilitate high-resolution image segmen-
tation on satellite images, a few approaches have been pro-
posed. For example, GLNet [8] uses a downsampled ver-
sion of the full-resolution input image in the global branch
and extracts patches from the same input image into the local
branch, with the aim that the two branches will collaborate
with each other. MBNet [9] improves upon GLNet by taking
co-centered patches of various sizes, instead of only one res-
olution. In addition, ISDNet [10] takes the full-resolution im-
age as input but uses a lightweight network to extract features.
To improve the low-level fine-grained features extracted by
the lightweight network, a deep network is also used to ex-
tract features from the downsampled full-resolution image in
a parallel branch.

However, methods like ISDNet and MBNet are specifi-
cally tailored for the segmentation of high-resolution images
and do not readily translate for usage in the case of satellite
image forgery localization. This is because forgery localiza-
tion, although a segmentation task, requires additional fea-
tures to accurately pinpoint the forged region within the im-
age. Moreover, no attempt has been made yet to significantly
deviate from the traditional patch-based or downsampling-
based training approaches in this field. As a result of all the
above factors and challenges, existing satellite forgery local-
ization methods still suffer from drawbacks such as inaccurate
boundaries and the generation of artifacts.

Our work aims to overcome such drawbacks by leverag-
ing training strategy from high-resolution image segmenta-
tion literature and tailoring and translating it to fit the satellite
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Fig. 1. Overview of proposed HRFNet: The shallow branch consisting of a lightweight model takes the full resolution satellite
image as input. In contrast, the deep branch consisting of a deep network takes the downsampled satellite image as input. Both
RGB and resampling features are extracted and fused to output the final prediction mask.

image manipulation localization task. Specifically, inspired
by the shallow and deep integration of ISDNet [10], we pro-
pose a novel model called “HRFNet”, which successfully in-
tegrates resampling and RGB features from both the shallow
branch and deep branch to effectively perform satellite image
manipulation localization. The RGB branches assist in dis-
tinguishing tampered regions from authentic regions by cap-
turing visual inconsistencies at tampered boundaries, such as
the contrast effect between tampered regions and authentic
regions, etc. On the other hand, SRM branches analyze the
local noise features in an image, such as resampling artifacts,
etc.

Both the RGB and SRM branches are further divided into
shallow and deep branches. The shallow branch enables the
extraction of features in a global manner with a wide field of
view, whereas the deep branch extracts more detailed and hi-
erarchical features. By fusing features from both branches,
our model successfully captures image manipulation traces
and becomes effective in localizing high-resolution satellite
image manipulation in an efficient manner. It should also
be noted that we only adopt the training strategy of ISDNet,
which is the local-global collaboration strategy. However, the
underlying architecture of HRFNet is fundamentally differ-
ent compared to ISDNet. In summary, our main contributions
are:

• We propose a novel satellite image manipulation localiza-
tion model named HRFNet that is equipped with RGB and
SRM branches of shallow and deep nature for successfully
integrating both global contextual information and fine-
grained local information to capture forgery traces from
high-resolution satellite images effectively.

• Our approach deviates from the conventional patch-based
or downsampling-based methods, specifically in the case

of satellite image manipulation localization task, aiming to
tackle the drawbacks inherent to the previous approaches.

• We perform several experiments on satellite manipulation
dataset to show that our method achieves the highest per-
formance compared to existing methods, while the memory
footprint and processing speed are not compromised.

Related Works: Extensive research has been conducted on
generic image forgery localization, which is not specific to
satellite images. ManTra-Net [11] is a prominent forgery lo-
calization model that uses a VGG-based feature extractor and
an LSTM-based detection module. It is trained to detect var-
ious types of image manipulation traces. Moreover, CFLNet
[12] combines contrastive learning with cross-entropy loss
for more generalizable forgery localization. However, these
methods are designed for lower-resolution images. Therefore,
downsampling or patch extraction is necessary when applied
to manipulated satellite images, which reduces performance.

On the other hand, several research works have been pro-
posed which are specifically focused on satellite image ma-
nipulation localization. One approach by [4] extracts patches
from full-resolution satellite images and uses a deep belief
network (DBN) to reconstruct them. The model detects and
localizes forgery based on the reconstruction error, which be-
comes significant for manipulated images. Authors in [6] em-
ploy a conditional GAN, where the generator aims to produce
the ground truth mask and the discriminator classifies forgery
using real image-mask pairs and synthetic pairs. In [7], au-
thors use an auto-encoder to reconstruct patches from satel-
lite images and apply an SVDD-based one-class classifier to
detect and localize forgery.



2. METHOD

In Fig. 1, we present the overall diagram of our proposed
HRFNet, where the inputs are the full resolution RGB image
I and its downsampled version I ′. As I represents the full
resolution image, using deep networks is impractical due to
memory constraints. Hence, we utilize a lightweight network
in the shallow RGB branch to extract features from I . How-
ever, a shallow network performs poorly in capturing long-
range and high-level semantic cues. To complement the shal-
low branch features, we introduce a deep network in the deep
RGB branch, which takes I ′ as input. The deep network ef-
fectively extracts high-level features from downsampled im-
ages. However, the deep network loses spatial information
due to the downsampled input image, which is better captured
by the shallow network using the full resolution image input.

Next, we incorporate a fusion module to merge features
from the shallow and deep RGB branches, aiming to enhance
segmentation performance through their complementary na-
ture. While sophisticated fusion methods have been proposed
in the literature [10, 13], it is important to note that our paper
primarily focuses on introducing a novel training strategy for
satellite image manipulation localization. Hence, we adopt
a simpler fusion mechanism that involves concatenating the
features.

Additionally, we utilize SRM filters [14] on I to gener-
ate the output Is. SRM filters are high pass filters that cap-
ture resampling features and enhance the high-frequency in-
formation of the input image, which is beneficial for forgery
localization. Is is then downsampled to obtain I ′s. Simi-
larly, Is and I ′s are passed through the shallow and deep SRM
branches respectively. Subsequently, feature concatenation is
again employed to fuse the features from both SRM branches.

Following the fusion module, we apply a conv-relu-conv
layer to the final features from the RGB and SRM branches,
followed by another fusion module that concatenates features,
combining the information from both branches. An ASPP
module [15] is then utilized on the resulting fused feature
maps to extract multi-scale information. It has been reported
in [16] that global context aids in gathering more clues for
manipulation detection. The ASPP module contributes to this
by extracting information at different scales, thereby making
global context and fine-grained pixel-level context available.
The output of the ASPP module is passed to the decoder,
where we employ a DeepLabv3+ style segmentation head to
generate the final segmentation mask.

3. EXPERIMENTS

Dataset: There is a scarcity of benchmark high-resolution
satellite image manipulation datasets. Hence, we take the
benchmark satellite dataset Deepglobe [17] and follow the
process from [4] to manipulate the satellite images. Each
final manipulated image in the dataset has a resolution of

Table 1. AUC Scores (in %).
Methods AUC (%)
MantraNet (CVPR’19) 77.31
DBN (CVPRW’20) 63.80
Vision Transformer (CVPRW’21) 73.26
CFLNet (WACV’23) 83.52
HRFNet (ours) 87.36

1, 000× 1, 000, as described in [4].
Baseline Models: We compare our method with methods
that are specifically designed for satellite image manipula-
tion localization - Vision transformer with post processing [5]
and DBN [4]. We also compare with the prominent image
forgery localization method - MantraNet [11] and the current
SOTA image forgery localization model CFLNet [12]. For
MantraNet and CFLNet, we resize input images to the size
specified by their respective papers for comparisons.
Implementation Details: We use ResNet-18 as a network
backbone for both deep RGB and deep SRM branches.
MobileNet-v3 is used for the shallow RGB and shallow
SRM branches. For the deep networks, we downsample the
input image to 224 × 224 pixel-size. We train HRFNet with
Adam optimizer with a learning rate of 1e − 3. We reduce
the learning rate by 20% after every 20 epochs and train for
100 epochs. Cross-entropy loss is weighted to provide the
tampered class ten times more weight [12]. We set the batch
size to 4 and train the model on NVIDIA Tesla K80 GPU.
Results: We report the AUC scores (in %) of our method
and the baseline models in Table 1. As shown, our method
achieves the highest performance compared to the other meth-
ods, yielding a 3.84% AUC improvement over the current
state-of-the-art methods for generic image manipulation lo-
calization. One reason behind the poor performance of Vi-
sion Transformer and DBN is that both the methods generate
heatmap and then threshold on the heatmap to generate the
output mask instead of using any learnable decoder.

To compare the resource requirement for HRFNet, we
compute the memory and processing time (in frames per sec-
ond or FPS) of our model and the best performing baseline
models of Table 1. The objective of this experiment is to
demonstrate that HRFNet achieves the best result without re-
quiring higher resource requirements compared to the best
baseline models. To measure the GPU memory usage of a
model, we use the command line tool “gpustat”, with the
minibatch size of 1, and avoid calculating any gradients as
instructed in [8].

Table 2 shows the memory performance results. Our
model achieves comparable results with the best baseline
models that do not take the full resolution image as an input.
Here, CFLNet requires the most amount of memory. Al-
though we use a two parallel architecture similar to CFLNet,
the network in our two deep branches is ResNet-18, whereas



Table 2. Memory requirement in MB and processing speeds
in FPS. Our method does not require extra resources com-
pared to baseline models while achieving the best perfor-
mance.

Methods Memory (MB) FPS
MantraNet 682 5.18

CFLNet 1,740 43.12
HRFNet (ours) 1,402 33.68

CFLNet uses two ResNet-50 based encoders. ResNet-50 has
more than twice the number of parameters than ResNet-18.
Hence, the overall memory requirement of HRFNet is less
than CFLNet. Although MantraNet requires the least amount
of memory, the AUC score of MantraNet is also the least
among the three models. HRFNet achieves a balanced spot
regarding the memory requirement, while the AUC score is
the highest. For low-powered mobile devices, processing
speed is also a major factor. We have also measured the pro-
cessing time in FPS for the three models in Table 2. In fact,
CFLNet achieves the best processing speed due to its simpler
encoder-decoder type architecture, while HRFNet performs
better than MantraNet. Here again, it is demonstrated that our
model achieves a balanced spot and does not need extra re-
sources compared to best performing baseline models. Based
on table 2, we can easily conclude that the resource require-
ment for HRFNet is very much comparable to the baseline
models, while it achieves the best localization performance.
Visualization: In Fig. 2, we present the sample visualizations
of the predicted masks generated by HRFNet and compare
them to those of the best performing baseline model in our
experiment - CFLNet. It is evident that the predicted masks
of CFLNet have inaccurate boundaries compared to HRFNet
due to downscaling the input image. This is in accordance
with [8], where it has been claimed that downsampling high-
resolution images results in inaccurate boundaries and un-
wanted artifacts in the predicted masks. Additionally, when
the forged object’s shape is very small, CFLNet struggles to
localize it, which is expected because downsampling discards
important spatial information. On the other hand, the shallow
branch of HRFNet extracts features that have accurate spatial
information, and the deep branch extracts high-level seman-
tic cues. Complementing both features yields more accurate
localization results for the forged objects using our method.

4. CONCLUSION

In this paper, we propose a novel satellite image manipulation
localization model, HRFNet. Deviating from conventional
training strategy that involves patch extraction or downsam-
pling, our method introduces a new training strategy specif-
ically targeted for the task of high-resolution satellite image
manipulation localization. Our method exploits shallow and

Input GT Mask CFLNet Ours

Fig. 2. Comparison of the predicted mask with the best per-
forming baseline model - CFLNet. It is evident that the pre-
diction of HRFNet is closer to the ground truth mask com-
pared to CFLNet.

deep integration to successfully capture both global context
and high level semantic clues, as well as noise features in
order to trace and localize forgery. We have compared our
method with existing satellite image localization methods, as
well as SOTA generic image manipulation localization meth-
ods and demonstrated that our method achieves the best per-
formance while the memory requirement and processing time
remain similar to existing methods. We hope our work will
inspire more research in this area for effectively localizing
satellite image manipulation.
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