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ABSTRACT

Pancreas segmentation is challenging due to the small pro-
portion and highly changeable anatomical structure. It moti-
vates us to propose a novel segmentation framework, namely
Curriculum Knowledge Switching (CKS) framework, which
decomposes detecting pancreas into three phases with different
difficulty extent: straightforward, difficult, and challenging.
The framework switches from straightforward to challenging
phases and thereby gradually learns to detect pancreas. In
addition, we adopt the momentum update parameter updating
mechanism during switching, ensuring the loss converges grad-
ually when the input dataset changes. Experimental results
show that different neural network backbones with the CKS
framework achieved state-of-the-art performance on the NIH
dataset as measured by the DSC metric.

Index Terms— Pancreas Segmentation, Curriculum
Learning, Knowledge Switching

1. INTRODUCTION

This paper focuses on pancreas segmentation from CT-scanned
images, which is a crucial step in diagnosing and supporting
pancreatic cancer surgery. The segmentation of the pancreas
is challenging for two basic reasons: (1) The pancreas only
takes up about 1.5% of a typical 2D abdominal multi-organ
CT image, which means that both size and resolution have
posed significant challenges to the segmentation network; (2)
In addition, unlike the heart, kidneys, and other organs, whose
geometric shapes are essentially fixed, the pancreatic organs
of different people differ greatly.

Most contemporary approaches employ the coarse-to-fine
framework [1} 2} 3, 4], in which the coarse network uses the
original image as input to determine the approximate pan-
creatic position and produces a bounding box. The created
bounding box is then used to locate the pancreas and crop the
original image to obtain a smaller cropped image with a larger
pancreas-to-background ratio, followed by the fine network,
which is used to segment the cropped image with good pre-
cision. The two-stage technique trains two distinct networks
separately on large and small images, resolving the issue that
the pancreatic content of the original image is too small to
segment directly. However, the method is effective but heavily
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Fig. 1. Overview of our proposed framework. Several Pan-
creatic Pixel Discriminators (PPD) are built to progressively
switch from straightforward, difficult, and challenging datasets,
D1, Dy, and D3. Learned knowledge is stored in the two cache
models by the momentum update mechanism and is switched
to the subsequent PPDs.

dependent on the detection results of the coarse model. Recent
efforts tend to directly apply the raw dataset to train the coarse
network, and we argue that it is challenging for the model to
learn representation on the raw dataset properly because the
number of pancreatic pixels in a CT picture is too few to be
resolved by the coarse network alone.

According to this observation, we propose a novel Curricu-
lum Knowledge Switching framework inspired by curriculum
learning [5]. Instead of directly mapping the input domain to
the label domain, we employ four specialized training phases
with distinctive datasets D1, Dy, and D3 and neural networks
to decompose the learning of pancreatic patterns into smaller
components. The framework progressively switches from Dy
to D3 in order to learn from detecting the pancreatic region
properties to extracting the pancreatic-specific pixels. In order
to effectively inherit knowledge learned in previous stages, we
employ the momentum update mechanism to incrementally
switch the learned knowledge to two cache models, as shown
in Fig.

Experimental results on the NIH dataset reveal that our
framework with multiple backbone types outperforms state-
of-the-art approaches based on the DSC metric. The CKS
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framework incrementally enhances segmentation performance
and identifies the global optimum of precise pancreas segmen-
tation.

The main contributions of this paper are listed as follows:

* We propose a Curriculum Knowledge Switching (CKS)
framework to teach neural networks constructing pan-
creas discriminate ability in a consecutive manner,
which starts from straightforward to challenging prob-
lems.

* The momentum update method is used for knowledge
switching, ensuring the learned knowledge from previ-
ous stages inherits to the following tasks.

* We employ a data augmentation strategy to refine the
learning of the segmentation stage. Experimental results
have shown the superiority of the proposed frameworks
across different backbones.

2. METHODOLOGY

2.1. The Curriculum Knowledge Switching Framework

We observe that semantic segmentation models for the pan-
creas could be regarded as Pancreatic Pixel Discriminators
(PPDs), which are utilized to estimate pancreatic pixel loca-
tions while filtering out background pixels. Due to the varying
shape of the pancreas organ, accurately detecting the pancreas
poses great challenges. We construct units with suitable levels
of complexity to overcome this issue, enabling the PPDs to
gradually learn the location and specific pixels of the pancreas.

In this work, we set three phases with varying difficulty
levels, straightforward, difficult, and challenging, to progres-
sively guide the framework to identify the pancreas from the
complicated CT scan background, as shown in Fig. 2] These
three steps correspond to three training sets: the ground-truth
bounding box cropped from the label set (D7) dominated by
pancreatic pixels; the cropped bounding box predicted by the
coarse model (D2), which has more background than D; and
contains boundary ambiguity pixels; and the raw image (Ds),
which is the raw CT slices and is mainly occupied by the back-
ground pixels. At each level, we assign a distinctive PPD to
map the corresponding domains.

Since the model of the detection stage learns the requi-
site pancreatic characteristics, we wish to switch the learned
knowledge from the detection stage to the segmentation stage
during the succeeding segmentation step.

2.1.1. Momentum Update for Knowledge Transferring

As we utilize multiple PPDs to locate and learn precise features
of the pancreas, retaining the performance of the trained model
when switching between phases is necessary. We implement
two methods for effective knowledge switching. One is to
directly copy the trained model to the second one, and the other
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Fig. 2. The detection stage of the proposed framework. First,
f1 is trained by the image cropped by its label in D;. Sec-
ond, the detection cache model f,, is utilized to produce the
training set Dy and the f5 is further trained by datasets in Ds.
Lastly, the PPD f3 is trained by the image in Ds.

Image

is to incrementally collect the acquired information, introduced
as follows:

A deep neural network model is denoted by f(X|©),
where X is the input image and O is the model weight pa-
rameters, updated by the back-propagation algorithm. The
momentum update approach gradually updates the model pa-
rameters O, from © by:

Oy = MOy + (1 —m)O )

where m € [0, 1] is a momentum coefficient that defines to
what extent the historical models should influence the current
model. Accordingly, the momentum update method is able to
update ©,,, smoothly [6].

2.1.2. Detection Stage

From Fig. 2] the detection stage of our CKS system employs
three PPDs { f1, f2, f3} and three training sets {D1, D3, D3 }.
The PPDs switch from D, to D3 and acquire the ability to dec-
tect the pancreas. In addition, we build an extra cache model,
namely Detection Cache, to accumulate the knowledge learned
in the three phases with the momentum update mechanism,
making it more robust and stable than all three PPDs.

Phase I In D;, the proportion of the pancreas is rela-
tively large, and the positive and negative examples are well
balanced. We employ a PPD here, namely f; to learn detailed
patterns of the pancreas. In this phase, the input X € D; is
cropped by utilizing the ground-truth T to generate image X'
and we feed X' to f1,

{X’ = crop(X,T) € D, )

Py = f1(X'©1)
where the first PPD is denoted by f;(X’|©1), P is the pre-

diction of f;, and ©; is its parameters, updated by the back-
propagation algorithm. The parameters of the detection cache,



Oy, are updated by the momentum update:
@Inu = agmu + (1 - 05)@1 (3)

After the first phase, fiu (X |Omu) is able to identify the over-
all shape of the pancreas and yet failed to extract pancreas
features from datasets with low pancreas pixels ratio. This
issue is further addressed in the second phase.

Phase II  In this phase, the detection cache model pro-
duces candidate frames with more boundary ambiguity pixels
and a larger percentage of non-pancreatic pixels. The produced
training set is D,. Using the pancreatic pixel discrimination
capabilities of fy,,, the raw picture X € Dj is cropped to
generate X",

Rnu == fmu(X|®mu)7

X" = crop(X, Ppy > 0.5) € Dy
Py = f2(X"]©2)

@mu = Oé®mu + (1 - 04)92

“)

With D5, we employ a PPD, f5, with weights initialized
by ©; to guide the framework switching to the difficult phase
of learning. We argue that switching from D; to D bridges a
critical step to guarantee the final detection accuracy.

Phase III  In the third phase, i.e., the challenging phase,
we intend to guide the framework to extract pancreatic features
directly from the raw CT scan input slices D3. We employ a
PPD, f3, with weights initialized by ©4. This step renders the
f3 consistent with the real situation and obtains high pancreatic
pixel discriminative ability. The learned knowledge is switched
and stored in the Detection Cache model with the momentum
update mechanism. This phase is formulated as:

Py = £,(X65), “
@mu = 04611111 + (1 - 05)63

Notably, our strategy is heavily based on the momentum
update mechanism, which guarantees effective knowledge
switching. The detailed pancreatic properties learned dur-
ing the first phase of training are switched to f5 in the second
phase, passing the first phase categorization capabilities to
the second, and the momentum update mechanism provides
additional information regarding the peripheral characteristics
of the pancreas to f> during the second phase. In the third
phase, dataset D3 enhances the model PPD ability to general-
ize from real-world scenarios. The entire training process is
dynamic, establishing not only a balance between the detection
and segmentation stages but also high performance.

2.1.3. Segmentation Stage

This stage aims to precisely segment the pancreas area accord-
ing to the detection of the previous stage. The pixel discrimi-
nation abilities vary at various stages of the detection training.
However, following the completion of the three-step coarse

training, the Detection Cache model f,,, is fixed, and its pre-
diction behaves identically to the actual test circumstance.
Therefore, we combine D, into D; to train the segmentation
model f5°8, allowing the framework to switch from detecting
the pancreas to extracting the detailed features of the pancreas.
The segmentation model parameters are also stored in the
Segmentation Cache Model f5°8with the momentum update,

which is typically more reliable and smoother than f5°¢.

2.2. Prediction

The training stage yields two networks: the Cache Detection
Model fr,, and the Cache Segmentation Model f;°¢. The
prediction workflow is as follows: First, we feed the test image
X forward: Piet = frmu(X|Omu) . Second, we crop image
X to produce X" € Dy by X, X" = crop(X, Paet > 0.5) .
Third, we feed X" forward: Pz = f528(X"|©58) . Fourth,
we do thresholding on Py, to obtain the segmentation result .

2.3. Supervision

In this paper, we adopt the intersection-over-union loss for
model learning supervision:

2 _ij tigPij

Liw=1— ,
o Do tig + 20 Pig — Dy tigDig

(6)

where T' = [t;;] denotes the ground-truth binary label matrix
and P = [p;;] = f(X]O) is the prediction probability of
pancreatic pixels.

Since the Pancreatic Pixel Discriminator is regarded as
the binary classifier, we add the binary cross-entropy loss for
better supervision:

Lice ==Y (tyInpi; + (1= tij) In(1 —py)) . (7)

ij

As the adjacent pancreatic pixels have a high probability
of being pancreatic area [7], we use Gaussian kernel smoothed
T = [t;;] and P = [p;;] to define a new loss, and it is formu-
lated as: R

1 2D
Lo=1— ) 29 ®)
2 | 52
N T i + Dij
where [V is the number of pixels of an image.
The overall loss is given by:

E(P, T) = £iou + ACbce + £s . (9)

3. EXPERIMENTAL RESULTS

3.1. Experimental Setting

We validate the CKS framework using the NIH pancreas
dataset [[1] consisting of 82 contrast-enhanced abdominal CT
volumes. Each CT volume is cut into a set of 2D slices and
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Fig. 3. Results of the detection stage of our proposed CKS
framework comparing to FPM [3]] and RSTN [4] with two
backbones (FCN-8s [|8] and U-Net [9]]).
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Fig. 4. The detection stage of CKS adapts real domain D3
gradually. Note that the prediction error (highlighted in green
color) decreases as the framework switches to the challenging
phase, along with the improvement of the DSC metric.

each slice is cut along three axes, i.e., the coronal, sagittal, and
axial views. Following [3]], experiments are conducted in a
cross-validation manner on four-folds. The test set contains
20 images and each image has at least 5,000 valid slices in
both directions, and thereby the reliability of our results is
guaranteed. Finally, the Dice-Sgrensen coefficient (DSC) is
exploited to measure performance.

3.2. Detection Stage Performance

According to Fig.[3] the detection stage results of CKS out-
perform the performance of FPM [3] and RSTN [4] under the
same baseline, which is beneficial to the subsequent segmenta-
tion stage.

Fig. [ depicts the process of the proposed CKS framework
progressively switching to the final detection result across
three difficulty levels in detail. As the figure shows, the CKS
framework guides the PPDs switching from D; to D3 with
the DSC metrics increasing steadily. Experiments reveal that
training set Dy contains more non-pancreatic pixels than Dy
and numerous pixels with border ambiguity data. The second
training phase is closer to the real-world situation than Dy and
gives more attention to ambiguous locations.

The detection result without the constructed first and the
second phases show inferior performance, which are 81.33%
and 81.59% in terms of the DSC metric, respectively, as com-
pared to the result of 85.42% with three full training phases.

Table 1. DSC performance of the proposed CKS algorithm
with thresholds(%) following [13]].

Method Mean Max Min
Detection 83.94 91.01 58.45
d; > 0.95 85.42 + 4.39 91.57 67.59
dy > 0.98 85.41 £+ 4.44 91.58 67.38
d; > 0.99 85.37 +4.43 91.61 66.50

Table 2. DSC performance of CKS and SOTA methods (%).
Methods with FCN-8s are above the double lines and the ones
with U-Net are below the double lines.

Method Mean Max Min
DeepOrgan [1]] 71.42410.11 86.29 23.99
Roth et al. [10] 78.01+8.20 88.65 34.44
FPM [3] 82.37+5.68 90.85 62.43
Roth et al. [11] 81.274+6.27 88.96 50.69
Cai et al. [12] 82.4046.70 90.10 60.00
RSTN [4] 84.50+£4.97 91.02 62.81
Zhu et al. [13]] 84.59 4 4.86 91.45 69.92
Zhang et al. [14] 84.47 £+ 4.36 91.54 70.61
STFFM [[15]] 84.90 91.46 61.82
U-Net [9] 79.70 £ 7.60 89.30 43.40
Attention U-Net [[16]] 83.10 £ 3.80 89.38 66.77
CKS 85.42 +4.39 91.57 67.59

3.3. Overall Performance

This section reports the prediction results. We utilize U-net as
our network backbone in line with methods listed in Table 2]
Following [3]], DSC metrics of the detection model and the
overall model under different thresholds are summarized in
Table[T} The comparison results are provided in Table[2] For
the sake of a fair comparison, the metrics are from their pa-
pers or reproducing the publicly available code. The outcome
demonstrates improvement over the state-of-the-art algorithms.

4. CONCLUSION

We present a novel Curriculum Knowledge Switching (CKS)
framework that directs the Pancreas Pixel Discriminators with
designed adaptive phases to incrementally switch from easy to
difficult training sets and acquire the capacity to localize and
segment the pancreas gradually. The augmented dataset Dy
is employed to train the second phase of the detection stage,
bridging the direct switching from D; to D3. Moreover, we uti-
lize the momentum update to facilitate progressive knowledge
switching, inheriting the learned knowledge to the subsequent
ones. Experimental results demonstrate that CKS surpasses the
state-of-the-art accuracy and is helpful for computer-assisted
clinical diagnosis and detection of small objects.
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