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ABSTRACT

Dynamic Digital Humans (DDHs) are 3D digital models that
are animated using predefined motions and are inevitably
bothered by noise/shift during the generation process and
compression distortion during the transmission process,
which needs to be perceptually evaluated. Usually, DDHs are
displayed as 2D rendered animation videos and it is natural
to adapt video quality assessment (VQA) methods to DDH
quality assessment (DDH-QA) tasks. However, the VQA
methods are highly dependent on viewpoints and less sensi-
tive to geometry-based distortions. Therefore, in this paper,
we propose a novel no-reference (NR) geometry-aware video
quality assessment method for DDH-QA challenge. Geome-
try characteristics are described by the statistical parameters
estimated from the DDHs’ geometry attribute distributions.
Spatial and temporal features are acquired from the rendered
videos. Finally, all kinds of features are integrated and re-
gressed into quality values. Experimental results show that
the proposed method achieves state-of-the-art performance
on the DDH-QA database.

Index Terms— Dynamic digital human, video quality as-
sessment, no-reference, geometry-aware

1. INTRODUCTION

With the increasing popularity of digital humans in various
applications, such as virtual reality, gaming, and telecom-
munication, the quality of dynamic digital humans (DDHs)
has become a crucial factor in providing a realistic and en-
gaging experience. To provide useful guidelines for com-
pression algorithms and improve the Quality of Experience
(QoE) of viewers, it is necessary to carry out objective quality
assessment methods to predict the quality values for DDHs.
Considering that the DDHs are usually rendered into 2D an-
imation videos for exhibition [1], it is reasonable to trans-
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fer video quality assessment (VQA) methods to DDH quality
assessment (DDH-QA) tasks. During the last decade, large
amounts of effort have been dedicated to pushing forward the
development of VQA. Early full-reference (FR) VQA meth-
ods typically use IQA methods, such as PSNR and SSIM
[2], to compute the quality difference between reference and
distorted frames. Similar to FR-VQA methods, some no-
reference (NR) VQA methods compute each frame’s qual-
ity level using NR image quality assessment (IQA) methods,
such as BRISQUE [3] and NIQE [4]. To incorporate spatial
and temporal features, handcrafted-based methods have been
proposed, such as VIIDEO [5], V-BLIINDS [6], TLVQM [7],
and VIDEVAL [8]. Deep neural networks (DNNs) have also
been employed, such as VSFA [9], RAPIQUE [10], Sim-
pVQA [11], and FAST-VQA [12, 13].

However, the rendered videos are variant to the view-
points and the 2D media are not sensitive to the 3D model
distortions [14, 15], which indicates simply employing VQA
methods is far from enough for DDH-QA task. Therefore,
in this paper, we propose a novel NR geometry-aware VQA
method to deal with DDH-QA issues. Specifically, geom-
etry attributes including dihedral angle and curvature are
computed for the 3D geometry mesh of the digital humans.
Then statistical parameters are estimated from the geometry
attribute distributions to quantify the geometry distortions
such as geometry noise and compression. Afterward, the ren-
dered 2D videos are split into clips for spatial and temporal
feature extraction. The first frame of each clip is used for spa-
tial feature extraction with a 2D-CNN backbone while each
whole clip is utilized for temporal feature extraction with a
fixed pretrained 3D-CNN backbone. The spatial features can
help identify the texture distortions like blur and color noise
while the temporal features can assist detect motion distor-
tions including motion blur and motion unnaturalness. Later,
the geometry, spatial, and temporal features are fused with
concatenation and regressed into quality scores with fully-
connected (FC) layers. The experimental results show that
the proposed method outperforms all the comparing methods
on the DDH-QA [16] database.
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Fig. 1. The framework of the proposed method, where the
geometry, spatial, and temporal features are extracted from
the geometry mesh, key frame, and clip respectively. Then
the features are fused with concatenation.

2. PROPOSED METHOD

Given a DDH model, we first derive the static digital human
geometric meshM. Afterward, the DDH model is rendered
into an animation video sequence V from a perceptually se-
lected viewpoint, which can cover the major quality informa-
tion of the DDH model. BothM and V are directly provided
in the DDH-QA [16] database.

2.1. Geometry Feature Extraction
It has been shown in previous works [17] that the geometry
characteristics are effective for describing the quality-aware
local patterns of the 3D models. A mesh is typically defined
as a collection of vertices, edges, and faces, then we define
the geometry mesh for the DDH as:

M= (Vt,Eg,Fc), (1)

where Vt, Eg, and Fc represent the sets of vertices, edges,
and faces respectively.

2.1.1. Dihedral Angle

The dihedral angle is the angle between the normals of two
adjacent faces, which has been regarded as an effective indi-
cator for quantifying the quality of mesh simplification and
compression algorithms [18]. We can calculate the dihedral
angle between two adjacent faces in a mesh by the dot product
of corresponding normal vectors:

cos θi =
ni1 ⋅ ni2

∥ni1∥∥ni2∥
, (2)

where θi denotes the dihedral angle of i-th edge Egi, ni1 and
ni2 represent the normal vectors of the two adjacent faces
whose coedge is Egi. For each edge in the set Eg, its corre-
sponding dihedral angle is computed, which finally generates
an array of dihedral angles θ.
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(b) Ref dihedral angle distribution

(c) Compression
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(d) Compression dihedral angle distribution
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(f) Ref curvature distribution
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(h) Noise curvature distribution

Fig. 2. Reference and distortion examples for the static mesh
model along with the corresponding normalized probability
distributions for dihedral angle and curvature respectively.
The reference distributions can be greatly altered by the pres-
ence of distortions. And the estimated statistical parameters
are capable of reflecting the perceptual loss from the distribu-
tion appearance, as proven in [17].

2.1.2. Gaussian Curvature

Curvature is commonly used for characterizing the features of
a surface, such as describing smoothness or roughness, which
makes it quite sensitive to structural distortions and thus en-
ables it to assist in describing the visual quality of 3D mod-
els [17, 19]. To quantify structural damage for the mesh, we
choose Gaussian curvature as the corresponding feature oper-
ator:

Gm =
(2π −∑n θmn)

Am
, (3)

where Gm is the Gaussian curvature for the m-th vertex V tm,
θmn is the n-th angle between the two adjacent edges at vertex
V tm, and Ai indicates the area of the Voronoi cell of vertex
V tm. For each vertex in the set Vt, its corresponding Gaus-
sian curvature is computed, which finally generates an array
of Gaussian curvature G.

2.1.3. Stastical Parameters Estimation

The mean, variance, and entropy are employed as the ba-
sic statistical parameters. We further choose the generalized



Gaussian distribution (GGD) [3], the general asymmetric gen-
eralized Gaussian distribution (AGGD) [3], and the Gamma
distribution to estimate quality parameters from the normal-
ized dihedral angle array θ̂ and the normalized Gaussian cur-
vature array Ĝ. It has been proven that the appearance of
such feature distributions can be altered by various types of
distortions, which can be reflected by the estimated statistical
parameters [17, 19]. Therefore, these parameters are effective
for measuring the visual fidelity of 3D models in the presence
of distortion, which can be calculated as:

X ∼ Basic(µ,σ2,E),
X̂ ∼ GGD(α1, β1),
X̂ ∼ AGGD(η, v, σ2

l , σ
2
r),

X̂ ∼ Gamma(α2, β2),

(4)

where X and X̂ represent the distributions and normalized
distributions for dihedral angle and curvature arrays, (µ,
σ2,E) parameters in the Basic(⋅) function stand for (mean,
variance, entropy) respectively. More specifically, the GGD
parameters estimation can be obtained as:

GGD(x;α1, β
2
1)=

α1

2β1Γ(1/α1)
exp(−(

∣x∣

β1
)

α1

) , (5)

where β1 = σ

√
Γ(1/α1)

Γ(3/α1)
, Γ(α1) = ∫

∞

0 tα−1e−tdt,α1 > 0

is the gamma function, and the two estimated parameters
(α1, β

2
1 ) indicate the shape and variance of the distribution.

The AGGD parameters estimation can be derived as:

AGGD(x;η, v,σ2
l , σ

2
r) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v

(βl+βr)Γ(
1
v
)
exp(−(−x

βl
)
v
) , x < 0,

v

(βl+βr)Γ(
1
v
)
exp(−( x

βr
)
v
) , x ≥ 0,

(6)

where η represents the βr and βl difference while βl =
σl

√
Γ ( 1

v
)/Γ ( 3

v
) and βr = σr

√
Γ ( 1

v
)/Γ ( 3

v
), σ2

l and σ2
r

characterize the spread extent of the distribution on the left
and right sides, v determines the shape of the distribution.
The shape-rate Gamma distribution is formulated as:

Gamma(x;α2, β2) =
βα2

2 xα2−1e−β2x

Γ(α2)
x > 0, (7)

where α2 and β2 stands for the shape and rate parameters and
α2, β2 > 0. In all, a total of 2×(3+2+4+2) = 22 statistical pa-
rameters are obtained for describing the geometry perceptual
quality for a single DDH and we refer to these features as GF .

2.2. Video Feature Extraction

Given a rendered animation video whose number of frames
and frame rate is nf and rf , we split the video into nf

rf
clips

for feature extraction and each clip lasts for 1s.

2.2.1. Spatial Feature Extraction

The spatial features can directly assist the model to identify
the existence and extent of common distortions such as blur
and noise. Additionally, considering the hierarchical visual
perception process, we employ the multi-scale features ex-
tracted from a 2D-CNN backbone to incorporate the quality-
aware information from low-level to high-level. For the i-th
clip Ci, the first frame is selected as the key frame for spatial
feature extraction:

SFi = α1 ⊕ α2 ⊕ α3 ⊕⋯⊕ αNL
,

αj = GAP(Lj(Fi)), j ∈ {1,2,3,⋯,NL},
(8)

where SFi denotes the extracted spatial features from the key
frame of the i-th clip, ⊕ represents the concatenation opera-
tion, GAP(⋅) stands for the global average pooling operation,
Lj(Fi) indicates the feature maps obtained from j-th layer of
the 2D-CNN backbone, αj denotes the corresponding aver-
age pooled features, and NL is the number of the layers for
the 2D-CNN.

2.2.2. Temporal Feature Extraction

DDHs can be bothered by motion-based distortions such as
motion unnaturalness and model clipping. Therefore, to cap-
ture the motion-based quality-aware features, we utilize a pre-
trained 3D-CNN backbone for temporal feature extraction:

TFi = T (Ci), (9)

where TFi represents the extracted temporal features from
the i-th clip Ci and T indicates the feature extraction opera-
tion of the pretrained 3D-CNN backbone.

2.3. Feature Fusion & Quality Regression
With the geometry features and video features extracted
above, we conduct the clip-level feature fusion by concatena-
tion:

Fi = GF ⊕ SFi ⊕ TFi, (10)

where GF represents the geometry features for the DDH, SFi

and TFi indicate the spatial and temporal features extracted
from Ci, and Fi is the final fused features for Ci. Then two-
stage fully-connected layers are employed to regress the clip-
level features into quality values:

Qi = FC(Fi), (11)

where Qi stands for the predicted quality score for clip Ci and
the final quality can be computed via average pooling:

Q = 1

NC

NC

∑
i=1

Qi, (12)

where Q is the final quality score for the DDH and NC indi-
cates the number of used clips.



Table 1. Performance results on the DDH-QA database. Best
in RED and second in BLUE.

Ref. Model SRCC↑ PLCC↑ KRCC↑ RMSE↓

FR PSNR 0.4308 0.5458 0.3114 0.9013
SSIM 0.5408 0.6057 0.3920 0.8559

NR

BRISQUE 0.3664 0.4011 0.2568 1.0067
NIQE 0.0923 0.2489 0.0748 1.0418

VIIDEO 0.1219 0.1829 0.0732 1.0740
V-BLIINDS 0.4807 0.4936 0.3424 0.9564

TLVQM 0.2515 0.2824 0.1729 1.0480
VIDEVAL 0.2218 0.3470 0.1622 1.0246

VSFA 0.5406 0.5708 0.3858 0.9657
RAPIQUE 0.1815 0.2368 0.1246 1.0614
SimpVQA 0.7444 0.7498 0.5452 0.7228

FAST-VQA 0.5262 0.5382 0.3657 1.0499
Proposed 0.8004 0.7956 0.6028 0.6343

3. EXPERIMENT

3.1. Experimental Setup & Implementation Details

The DDH-QA [16] database is employed for validation,
which provides 800 degraded DDHs with both model-based
and motion-based distortions. The DDH videos are with
varying durations (2s∼8s) and are divided into 1s clips. We
uniformly employ 6 clips from each video with cyclic sam-
pling. Specifically, if a video has less than 6 clips, the existing
clips are expanded with cyclic sampling until 6 clips are se-
lected. For videos lasting for more than 6 seconds, the first 6
clips are used. The ResNet50 [20] is employed as the spatial
feature extractor and patches with a resolution of 448×448×3
are cropped as input. The SlowFast R50 [21] is utilized as
the temporal feature extractor and the clips are resized to
224×224 for both training and testing. The ResNet50 is ini-
tialized with a pre-trained model on the ImageNet database
[22] and fine-tuned during the training phase. While the
SlowFast R50 is frozen, with pre-trained model weights on
the Kinetics 400 database [23]. The Adam optimizer [24]
is utilized, with an initial learning rate of 4e-6. The default
number of epochs and batch size are set as 30 and 4. The
mean squared error (MSE) is used as the loss function.

The 5-fold cross-validation strategy is employed. In this
strategy, the 10 motion groups are split into 5 folds, with each
fold containing 2 groups of motion. Four folds are utilized as
training sets, while the remaining fold is used as the testing
set. This process is repeated 5 times, ensuring that every fold
is used as the testing set. The final experimental results are
obtained by recording the average performance. Furthermore,
for methods that do not require training, we apply them to the
same testing sets and report their average performance.

3.2. Benchmark Competitors & Criteria

To validate the animated videos in the DDH-QA database,
several video quality assessment (VQA) methods are utilized.
The FR methods, such as PSNR and SSIM [2], operate on
the frame level of the DDH videos. The NR methods include
handcrafted-based methods, such as BRISQUE [3], NIQE

Table 2. Experimental performance of the ablation study,
where GF, SF, and TF indicate the geometry features, spa-
tial features, and temporal features respectively.

Feature SRCC↑ PLCC↑ KRCC↑ RMSE↓
GF+SF 0.7771 0.7762 0.5896 0.6888
GF+TF 0.4312 0.4903 0.2961 0.9393
SF+TF 0.7786 0.7731 0.5860 0.6702

All 0.8004 0.7956 0.6028 0.6343

Table 3. SRCC Experimental performance corresponding to
the used number of clips. Since the videos last for 2s∼8s, we
test the proposed method with numbers of clips from 2∼8.

Num 2 3 4 5 6 7 8
SRCC 0.6914 0.7150 7501 0.7711 0.8004 0.7850 0.7745

[4], VIIDEO [5], V-BLIINDS [6], TLVQM [7], and VIDE-
VAL [8], as well as DNN-based methods, such as VSFA [9],
RAPIQUE [10], SimpleVQA [11], and FAST-VQA [12].

Four mainstream consistency evaluation criteria are uti-
lized to compare the correlation between the predicted scores
and MOSs, which include Spearman Rank Correlation Co-
efficient (SRCC), Kendall’s Rank Correlation Coefficient
(KRCC), Pearson Linear Correlation Coefficient (PLCC),
and Root Mean Squared Error (RMSE).

3.3. Performance Discussion
The experimental performance is exhibited in Table 1, from
which we can see that the proposed method outperforms all
the compared methods and surpass the second-place method
SimpVQA by about 7.5% in terms of SRCC, which indicates
the effectiveness of the proposed method for evaluating the
perceptual quality of DDHs. To further investigate the con-
tributions of different types of features, we conduct the abla-
tion study and the results are shown in Table 2. With closer
inspection, we can find that using all three types of features
achieves the best performance, which reveals that GF, SF, and
TF make contributions to the final results. Moreover, we test
the influence of utilizing varying numbers of clips and the re-
sults are illustrated in Table 3. It can be seen that when using
smaller than 6 clips, the performance can be improved by the
increasing number of clips. However, using 7 or 8 clips can
cause performance drops due to redundancy and over-fitting.

4. CONCLUSION

In conclusion, this paper proposes a novel no-reference
geometry-aware video quality assessment method for Dy-
namic Digital Humans. By leveraging statistical parameters
estimated from DDHs’ geometry attribute distributions and
spatio-temporal features acquired from rendered videos, the
proposed method achieves state-of-the-art performance on the
DDH-QA database. The approach offers an effective solu-
tion to the DDH quality assessment (DDH-QA) tasks, which
can be useful for improving the visual quality of DDHs and
enhancing the user experience in various applications.
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