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ABSTRACT
Distilling the structured information captured in feature

maps has contributed to improved results for object detection
tasks, but requires careful selection of baseline architectures
and substantial pre-training. Self-distillation addresses these
limitations and has recently achieved state-of-the-art perfor-
mance for object detection despite making several simplify-
ing architectural assumptions. Building on this work, we pro-
pose Smooth and Stepwise Self-Distillation (SSSD) for object
detection. Our SSSD architecture forms an implicit teacher
from object labels and a feature pyramid network backbone
to distill label-annotated feature maps using Jensen-Shannon
distance, which is smoother than distillation losses used in
prior work. We additionally add a distillation coefficient that
is adaptively configured based on the learning rate. We exten-
sively benchmark SSSD against a baseline and two state-of-
the-art object detector architectures on the COCO dataset by
varying the coefficients and backbone and detector networks.
We demonstrate that SSSD achieves higher average precision
in most experimental settings, is robust to a wide range of
coefficients, and benefits from our stepwise distillation pro-
cedure.

Index Terms— knowledge distillation, object detection,
Jensen-Shannon distance, stepwise distillation

1. INTRODUCTION

Knowledge distillation is a technique for transferring the
information contained in the feature maps and model out-
puts of a large teacher model to a typically smaller student
model [1, 2]. As a result, student models have lower storage
and memory requirements and yield more efficient infer-
ence, enabling use in limited resource or real-time settings
like in edge devices or autonomous vehicles [3, 4]. Object
detection is among the largest beneficiary of knowledge dis-
tillation [5, 6, 7] and transfer learning on related tasks [8],
but these techniques require careful selection of a baseline
teacher model and expensive pre-training [7, 9]. Recent work
removes the dependency on a pre-trained teacher entirely, e.g.
by collaboratively training a collection of student networks
(collaborative learning) [10] or smoothing class labels (label
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regularization) [11, 12]; however, these methods have largely
focused on image classification.

Unlike traditional transfer learning and knowledge distil-
lation, self-distillation aims at extracting knowledge from the
data labels during feature extraction within the same back-
bone model [5, 6, 7, 13, 14]; this eliminates the need for
expensive pre-training of a teacher network. LabelEnc is a
recently developed self-distillation method for object detec-
tion that encodes label information within the feature maps,
providing intermediate supervision at internal neural network
layers and achieving an approximately 2% improvement over
prior work in the COCO dataset [14]. Building on LabelEnc,
label-guided self-distillation (LGD) leverages both label-
and feature map-encodings as knowledge and improved the
benchmark set by LabelEnc on COCO [13].

While LabelEnc and LGD achieve state-of-the-art per-
formance, they make simplifying architectural assumptions.
First, they consider mean squared error (MSE) as the only
distillation loss, which is not robust to the noisy or imper-
fect teachers that are commonplace in self-distillation set-
tings [15]. Second, there is no consideration for how the
knowledge distillation coefficient λ affects the total loss or
overall performance. In this paper, we explore the limita-
tions of MSE as a self-distillation loss and the sensitivity of
self-distillation to λ. We propose Smooth and Stepwise Self-
Distillation (SSSD) by combining the Jensen-Shannon (JS)
divergence with a λ that is adaptively configured based on the
learning rate in a stepwise manner (Fig. 1). We summarize
our contributions as follows:

• We present Smooth and Stepwise Self-Distillation
(SSSD), which combines stepwise self-distillation with
a smooth, bounded, and symmetric distance that is
robust to noise (JS) [16, 17, 18].

• We study the sensitivity of self-distillation to the dis-
tillation coefficient λ under a variety of architectural
assumptions, providing insight on how λ influences
model performance.

• We thoroughly benchmark SSSD and demonstrate
higher average precision than previous self-distillation
approaches in most configurations of the backbone and
detector networks.
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Fig. 1. Smooth and Stepwise Self-Distillation (SSSD). The feature maps (K) extracted from the backbone (ResNet-50) are
sent to the fusion component along with the ground truth annotations. The distillation loss (Ldistill) is calculated using the
feature maps and label enhanced feature maps (Ke). The detection loss (Ldet) is calculated as classification and bounding-box
regression losses by a shared detection head.

2. PROPOSED METHOD

2.1. Smooth Self-Distillation

Leveraging prior work on self-distillation for object detection,
the features are obtained from a backbone feature pyramid
network with P scales [14, 13]. We define K = {kp ∈
RNp×Mp}P to be the set of features from the backbone fea-
ture pyramid network where kp is a vector of features at the
pth scale, each pyramid has dimension Np × Mp, and p ∈
{1, . . . ,P}. Similarly, let Ke = {kp

e ∈ RNp×Mp}P be the
feature maps obtained from a spatial transformer network [19]
(STN) by the label-annotated feature maps (denoted by e) in
the fusion component (Fig. 1). Existing self-distillation meth-
ods for object detection use mean squared error (MSE) to cal-
culate the distillation loss [13, 14]:

LMSE
distill =

1

N

P∑
p=1

||kp − kp
e ||2,

where N =
∑P

p=1 Np×Mp is the total number of feature map
elements. The Kullback-Leibler (KL) divergence is another
commonly used loss function that was used to initially define
knowledge distillation [1] and used subsequently across many
applications [20, 21, 22, 23]:

LKL
distill =

1

N

P∑
p=1

DKL(k
p||kp

e),

However, the KL divergence has several limitations. For
probability distributions O and Q, DKL(O||Q) is not bounded,
which may result in model divergence during training, and
is sensitive to regions of O and Q that have low probabil-
ity; e.g., DKL(O||Q) can be large when O(x) >> Q(x)
for an event x even if O(x) is small when Q(x) is close to

0 [24]. To address these issues, we use the Jensen-Shannon
(JS) divergence as a new measure for knowledge distillation
in object detection tasks. Unlike KL divergence, the JS di-
vergence is bounded by [0,1], symmetric, does not require
absolute continuity [25], and has been shown to be robust
to label noise [16, 17, 18] and imperfect teachers that are
commonplace in self-distillation settings [15]:

DJS(O||Q) = DJS(Q||O)

=
1

2
DKL(O||M) +

1

2
DKL(Q||M)

where M = 1
2 (O + Q). In this work, we consider the JS

distance, which is a metric defined by (DJS(O||Q))
1
2 . We

define the distillation loss, Ldistill, as:

Ldistill =
1

N

P∑
p=1

(DJS(k
p||kp

e))
1
2 ,

The detection loss is defined as:

Ldet = L̂det(H(K),Y ) + L̂e
det(H(Ke),Y )

where the H(·) refers to the shared detection head, Y is the
ground truth, and L̂ is a classification and regression object
detection loss. Thereby, we obtain the total training objective
as:

Ltotal = Ldet + λLdistill

where λ is a coefficient for the distillation loss. Our choice
of functional form for Ldistill was motivated by research
suggesting smooth loss functions improve deep neural net-
work training and performance [26, 27]; since the JS distance
DJS(0||Q) is considered to be a smooth compromise be-
tween DKL(O||Q) and DKL(Q||O), we term this knowledge
distillation method as smooth self-distillation.



2.2. Stepwise Self-Distillation

Learning rate scheduling is broadly used in large scale deep
learning as an important mechanism to adjust the learning rate
during training, typically through learning rate reduction ac-
cording to a predefined schedule. To help the model continue
learning from self-distillation during learning rate decay, we
propose stepwise self-distillation to compensate for the less-
ened impact of the self-distillation loss caused by a reduced
learning rate. In our setting, the backbone model is frozen
and the detector is trained in the first 20k iterations. An ini-
tial λ is assigned to the distillation loss empirically after the
first 20k iterations; selection of an empirical λ is elaborated in
the experimental section. We redefine the λ in stepwise self-
distillation as a step function of λ1 and a λ2 that depends on
the training iteration. Since in our model training the learning
rate begins decaying at iteration 120,000, we define λ as:

λ =

{
λ1, steps < 120000

λ2, steps ≥ 120000

3. EXPERIMENTS

We compared SSSD with two state-of-the-art (SOTA) self-
distillation architectures for object detection, LabelEnc [14]
and LGD [13], and a non-distillation baseline model. All ex-
periments were conducted using the official code repositories
for LabelEnc [28] and LGD [29], using a batch size of 16 on
8 NVIDIA v100 GPUs and configurations specified in their
official GitHub repositories. Our experiments tested different
backbone networks, ResNet-50 (R-50) and ResNet-101 (R-
101), and explored three popular detectors: Faster R-CNN
(FRCN) [30], fully convolutional one-stage object detector
(FCOS) [31] and RetinaNet [32]. All experiments were vali-
dated on the Microsoft Common Objects in Context (COCO)
dataset with 80 categories using commonly reported metrics
based on mean average precision (AP) and other detailed met-
rics: APs, APm, and APl, which are the AP for small, medium
and large objects, and AP50 and AP75, which are the AP at
IoU=0.50 and IoU=0.75 where IoU is the intersection over
union [33].

3.1. Comparisons with SOTA Results

We first compared SSSD with competing methods on the
COCO data based on AP and using two backbone networks,
R-50 and R-101, and three detectors, FRCN, RetinaNet and
FCOS (Table 1). Compared to the baseline model, our ap-
proach achieved an AP improvement of approximately 2.0%,
3.6%, and 3.2% for the FRCN, RetinaNet, and FCOS de-
tectors respectively. Our method improved on the AP of
LabelEnc by approximately 2.8% for FRCNR50, 2.2% for
FRCNR101, and more than 1% for other architectural con-
figurations. With respect to LGD, SSSD achieves an almost

Table 1. Comparisons with baseline and SOTA methods
based on mean average precision (AP).

Detector Backbone Baseline LabelEnc LGD Ours

FRCN R-50 39.6 39.6 40.4 40.6
R-101 41.7 41.4 42.2 42.3

RetinaNet R-50 38.8 39.6 40.3 40.2
R-101 40.6 41.5 42.1 42.1

FCOS R-50 41.0 41.8 42.3 42.4
R-101 42.9 43.6 44.0 44.2

1% gain in AP for the FRCNR50 and FCOSR101 configura-
tions and < 0.5% improvements in other FRCN and FCOS
settings.

Since the performance of LGD is most comparable to
SSSD, we further investigated the performance of LGD and
SSSD using variations of AP (Table 2). In the RetinaNetR101

setting, our proposed method achieved a 5% AP performance
gain (26.1 versus 24.9) for objects with small bounding boxes
(APs). The results for the other detectors demonstrate that
SSSD performs relatively well compared with LGD primarily
due to improved AP for objects with medium or large bound-
ing boxes (APm and APl). FCOSR101-based architectures
yielded the best AP results for both methods where SSSD
outperformed LGD in all AP-related measures besides APs,
including a 0.6%, 0.8%, and 1% gain over LGD in AP50,
APm, and APl respectively.

Table 2. Detailed Comparisons with LGD.
AP AP50 AP75 APs APm APl

FRCNR50-Ours 40.6 61.2 44.0 23.8 43.9 53.2
FRCNR50-LGD 40.4 61.3 43.9 24.0 43.9 52.2
FRCNR101-Ours 42.3 62.9 45.8 25.3 45.9 56.3
FRCNR101-LGD 42.2 62.8 45.5 25.9 45.5 56.0
RetinaNetR50-Ours 40.2 60.0 43.0 24.2 44.2 52.1
RetinaNetR50-LGD 40.3 60.1 43.0 24.0 44.1 52.4
RetinaNetR101-Ours 42.1 61.9 44.9 26.1 46.2 55.1
RetinaNetR101-LGD 42.1 62.1 45.1 24.9 46.5 55.0
FCOSR50-Ours 42.4 61.2 46.0 26.4 46.1 54.0
FCOSR50-LGD 42.4 61.2 45.8 26.2 46.1 54.3
FCOSR101-Ours 44.2 63.3 47.6 27.1 48.3 57.5
FCOSR101-LGD 44.0 62.9 47.5 27.2 47.9 56.9

3.2. Effect of Adjusting λ

Next, we considered the effect of varying the distillation co-
efficient, λ. While previous work assumed a λ = 1 [13],
we conjectured that adjusting λ may be beneficial for model
training due to varying the contribution of the distillation loss
to the overall loss function during learning rate decay. Since
we are using a different distillation loss than LGD, we first
calibrated the λ parameter between LGD and SSSD. First,
we reproduced the original experiments by setting λ = 1 in
LGD with the FRCN detector and R50 backbone; the mean
contribution of the penalized distillation loss to the total loss



Table 3. Comparisons of λLdistill/Ltotal with different λ
after iterations 17× 104.

LGD1 LGD1.5 LGD2 Ours50 Ours75 Ours100
0.44 0.46 0.58 0.41 0.49 0.47

(λLdistill/Ltotal) was 45% after 1,000 iterations. We com-
puted a λ in the domain of [1,100] using binary search that
yielded a mean λLdistill/Ltotal ≈ 0.45 after 1,000 iterations,
which led to an equivalent λ of 50 for SSSD. To explore the
impact of adjusting λ, we considered λ ∈ {1, 1.5, 2} for LGD
and λ ∈ {50, 75, 100} for SSSD. The λLdistill/Ltotal at iter-
ation 17 × 104 was similar across the two architectures (Ta-
ble 3). Interestingly, the final λLdistill/Ltotal was close to
50% for both LGD and SSSD regardless of the λ.

We compared the performance between LGD and SSSD
after calibrating λLdistill/Ltotal to be in a comparable range
(Fig. 2 and Table 4). The top performing λ for SSSD (75) con-
sistently outperformed the top performing LGD configuration
(λ = 1) in all AP measures besides AP50; when considering
all λ, SSSD compares favorably to LGD among most of the
AP variants, including up to a 1.1% (44.1 versus 43.6) im-
provement in AP75 (Table 4). The top performing SSSD also
maintains an advantage over LGD from iterations 13×104 to
17× 104 (Fig. 2).

  Ours50

LGD1

  Ours75

  LGD1.5

  Ours100

  LGD2

Fig. 2. Performance comparison with different λ. After
calibrating the distillation loss, the AP for SSSD with λ =
75 (Ours75) is higher than LGD configurations. The learning
rates for each architecture are 0 after iteration 17× 104.

3.3. Stepwise Distillation

Finally, we evaluated the effectiveness of stepwise distillation
in both LGD and SSSD using a fixed architecture (FRCN-
R50) over the final 60,000 iterations (Fig. 3). We tested LGD
λ1 = 1 and SSSD λ1 = 75 since these were the best per-
forming λ for this architecture (Table 4). Additionally, we

Table 4. Detailed Comparisons with different λ selections.
AP AP50 AP75 APs APm APl

LGD1 40.4 61.3 43.6 23.5 43.7 53.1
LGD1.5 40.2 60.8 43.3 23.8 43.3 52.7
LGD2 40.2 60.9 43.6 23.5 43.5 53.0
Ours50 40.5 61.2 44.1 23.8 43.5 53.2
Ours75 40.6 61.2 44.0 23.8 43.9 53.2
Ours100 40.2 60.7 43.4 23.5 43.4 52.6

tested a slightly increased LGD λ2 = 1.5 and SSSD λ2 = 80.
We compared these static λ settings with stepwise distilla-
tion, which switches from λ1 to λ2 at iteration 120,000 (in
the learning rate scheduler period). Stepwise distillation im-
proves both LGD and SSSD resulting in an approximately
0.5% improvement in AP over fixed λ settings (Fig. 3). Since
stepwise distillation does not impose additional computa-
tional costs and is independent of the architecture, we opti-
mistically believe that stepwise distillation may be beneficial
for other knowledge distillation applications.

LGD λ1

Ours λ1
LGD λ2

Ours λ2

Fig. 3. Stepwise self-distillation comparisons. The step-
wise self-distillation strategy for both LGD and SSSD (Ours)
improves final AP over a fixed λ.

4. CONCLUSION

In this paper, we proposed Smooth and Stepwise Self-
Distillation (SSSD) for object detection, which can efficiently
improve model performance without requiring a large teacher
model. Through extensive benchmarking, we demonstrated
that SSSD achieves improved performance when compared
with current SOTA self-distillation approaches for a variety
of backbones and detectors. We investigated the effects of
varying the distillation coefficient and justified stepwise dis-
tillation as a potentially beneficial procedure for improving
the performance of knowledge distillation schemes.
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