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ABSTRACT

Steganography is the process of embedding secret data into
another message or data, in such a way that it is not easily no-
ticeable. With the advancement of deep learning, Deep Neu-
ral Networks (DNNs) have recently been utilized in steganog-
raphy. However, existing deep steganography techniques are
limited in scope, as they focus on specific data types and are
not effective for cross-modal steganography. Therefore, We
propose a deep cross-modal steganography framework using
Implicit Neural Representations (INRs) to hide secret data of
various formats in cover images. The proposed framework
employs INRs to represent the secret data, which can handle
data of various modalities and resolutions. Experiments on
various secret datasets of diverse types demonstrate that the
proposed approach is expandable and capable of accommo-
dating different modalities.

Index Terms— Deep Steganography, Implicit Neural
Representation, Data Hiding

1. INTRODUCTION

Steganography is a technique that involves embedding secret
data, such as binary messages, images, audio, or video, into
another message or data in a way that makes it difficult to de-
tect. The objective of steganography is to add an extra layer of
security to communication, making it harder for unauthorized
parties to detect the presence of hidden information.

Recently, there has been a surge of interest in utilizing
deep neural networks (DNNs) in steganography pipelines.
Many of these approaches, such as those outlined in [1, 2,
3, 4, 5], use DNNs as encoders and decoders for embedding
and extracting hidden information. These deep steganogra-
phy techniques, which involve end-to-end training of DNNs,
have demonstrated advantages over traditional steganography
methods in terms of capacity and security, while also being
simpler to implement.

However, most of these methods are limited in scope and
focus only on specific data types, so they do not provide a
comprehensive solution for data hiding. The majority of deep
steganography approaches concentrate on hiding binary mes-
sages [6, 2, 7] or natural images [1, 3]. While some efforts
have been made to use deep steganography to hide video [8, 9]
or audio [10] within the same data type, there is a short-
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Fig. 1. We provide a comprehensive solution for deep cross-
modal steganography dealing with secret data of various
modalities by using INRs.

age of research on cross-modal steganography. This type of
steganography involves hiding secret data in cover data that is
in a different format than the secret data. This can be particu-
larly challenging when the secret data has higher dimensions
than the cover data, such as hiding a video in an image.

To address these limitations, we establish a new deep
cross-modal steganography framework using Implicit Neu-
ral Representations (INRs) that can be generalized to tasks
with secret data of various formats. We employed INRs to
represent the secret data, as INRs have the ability to handle
data of various modalities and resolutions as seen in Fig. 1.
Under this framework, the objective is to send secret data
expressed in INR through a container image with minimal
distortion from a cover image. To achieve this goal, we make
the following contributions:

• We enable the sender and recipient to share a base net-
work and transmit a portion of the weights constituting
that network in the form of an image.

• To reduce quantization error that occurs during the con-
version process from the weights to the images, we pro-
pose a simplified quantization-aware training.

We demonstrate the expandability of our method and poten-
tial for various applications through experiments on datasets
of various modalities.
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Fig. 2. We train fθ to approximate secret data S with various modalities, with a constraint that a portion of weights Wv to
imitate the cover image C. Using a container image C′, the only recipient who knows the remaining portion of the parameters
Wp can reveal the secret data S′ by reconstructing the whole INR network.

2. METHOD

2.1. Overview

Our goal is to solve the cross-modal steganography problem,
specifically hiding secret data S of various modalities (such
as a video, audio, or 3D shape) into a single cover image C.
The container image C′ including the information about S
should be difficult to distinguish from the cover image C by
human observation. In our framework, the sender and recip-
ient share the architecture of an INR, referred to as the base
network. The base network is composed of variable weights
(Wv) and pre-defined weights (Wp). The hiding stage is car-
ried out by training the INR so that the container image C′

converted from the Wv is close to the cover image C, while
simultaneously making the revealed secret S′ reconstructed
by the INR to be close to the secret S. The decoding can
be accomplished by reconstructing the entire INR using Wv

which is converted from C′ and Wp which is pre-defined.
This is achieved by treating each channel of the container im-
age as a weight matrix and inserting the weight matrices with
converted image channels in the base network.

2.2. Deep Cross-Modal Hiding Framework

In this paper, we consider, but not limited to, a multi-layer
perceptron (MLP) with L layers as an example of INR fθ
where the parameter θ can be defined as a set of matrices such
that θ = {Wl|Wl ∈ RCin×Cout}L−1

l=0 and Cin and Cout rep-
resent the number of units in each layer before and after Wl.
For the proposed method, the sender and recipient share the
pre-defined weights Wp and positions of variable weights.
Formally, the variable weights Wv refer to a subset of the
weights constituting the base network that can be trained. Ad-
ditionally, they share the hyperparameters wmin and wmax,
which are required for scaling and quantization.

We create a container image C′ by stacking the Wv and

scaling from the range of [wmin, wmax] to [0, 255] with the
idea that weight matrix has the same matrix form as an im-
age channel. Therefore, the Wv are trained for two objects
during the hiding phase: 1) the INR including the Wv should
represent secret data S well, and 2) the container image C′

converted from the stack of the Wv should be close to the
cover image C. During the hiding phase, all other parts of the
base network except for the Wv are fixed.

For the first object, the INR f(xi)θ : Rk → Rm are
trained to approximate the data point di∈I of secret data S
according to the input coordinate vectors xi∈I , where I is a
pre-defined set of input index. During the training, the Wv

are trained with a secret data reconstruction loss Ls, where

Ls(fθ) =
∑
i∈I
∥di − fθ(xi)∥22. (1)

For the second object, we constrain a stack of the variable
weight matrices Ws ∈ RN×N×3 to resemble the cover image
C ∈ RN×N×3. That is, we aim to directly utilize scaled Ws

as a container image C′ by minimizing a loss

Lc(Ws) = ∥Ws−(C/255·(wmax−wmin)+wmin)∥22. (2)

However, we did not consider the quantization error
caused by converting the weights to images in this section.
Hence, it is imperative to address the quantization error dur-
ing the hiding process.

2.3. Quantization-Aware Training for Weight-to-Image
Conversion

It should be noted that converting weights stored in FP32 to
an image stored in UINT8 can cause a significant perturba-
tion, leading it to deviate from the converged state. This
poses a major challenge and needs to be handled carefully
during the process. To address this, we introduce simplified
quantization-aware training (QAT) for weight-to-image con-
version. Originally, QAT is a method that is widely used in



network compression problems, which considers the quanti-
zation process during training. We use QAT with some modi-
fications to solve the problem that the weights are shifted from
the converged state during conversion.

We use a quantization module fθQ with quantized vari-
able weights Qv and the same pre-defined weights, which
simulates the quantization process during the training. For
the simulation, the variable weights Wv are quantized to Qv

for every updates of Wv as below formula:

Qv = ROUND(255 · (Wv − wmin)/(wmax − wmin))

Qv ← Qv/255 · (wmax − wmin) + wmin.

(3)

The quantization module fθQ is used to calculate the gradient
dL/dQv . As explained earlier, the total loss for the quantized
network L is:

L = Ls(fθQ) + β · Lc(Qs) (4)

where Qs is a stack of Qv . To back-propagate the gradient,
we convert dL/dQv into dL/dWv with straight through es-
timator (STE) [11]. Therefore, Wv is finally updated as fol-
lows:

dL/dWv ≈ STE(dL/dQv)

Wv ←Wv − α · dL/dWv.
(5)

The provided Fig. 2 illustrates the proposed steganography
framework as a whole.

3. EXPERIMENTS

We experiment with the proposed method on three tasks:
video-into-image steganography, audio-into-image steganog-
raphy, and shape-into-image steganography. These tasks have
not been explored well due to the difficulty that secret data
has higher dimensions than cover data or contains temporal
information. We demonstrate the performance and flexibility
of our method by solving these challenging tasks for the first
time.

3.1. Experimental Setting

Datasets. In common to all three tasks, cover images are ran-
domly sampled from the ImageNet [12] by the number of data
in the corresponding secret dataset, and all sampled cover im-
ages are resized to 512 × 512.

For video-into-image steganography, we use the Densely
Annotated VIdeo Segmentation dataset (DAVIS) [13] as a
secret dataset. We resize the secret videos to 128 × 128
and extract 16 frames from the videos. For audio-into-image
steganography, we hide audio data from GTZAN music genre
dataset [14, 15]. Each hidden audio data is cropped to a length
of 100,000 samples with a 22,050 sample rate (4.54 seconds).
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Fig. 3. Qualitative results of video-into-image steganography.

For shape-into-image steganography, we selected two sam-
ples, Stanford Bunny and Dragon, as secret three-dimensional
(3D) shapes from The Stanford 3D Scanning Repository [16].

Details. We use SIREN [17] with four hidden layers (to-
tal six layers) as the architecture of INRs to hide video and
audio, and IGR [18] with six hidden layers (total eight lay-
ers) as the architecture of INRs to hide shapes. For SIREN
and IGR, {W1,W2,W3} and {W1,W2,W4} are the vari-
able weights and represent color channels of the container im-
age, respectively. The remaining pre-defined weights Wp are
fixed in an initialized state. The INRs are trained for 5,000
steps for video and shapes, and 20,000 steps for audio using
Adam optimizer. In addition, the learning rate of the opti-
mizer is set to 1×10−3 for video and audio and set to 1×10−4

for shapes.

3.2. Experimental Results

Video-into-image steganography. The Average Pixel Dis-
crepancy (APD) of the cover and secret is calculated as the L1

distance between the cover and container and that between the
frames of the secret video and revealed secret video, respec-
tively. In addition to APD, we report Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity (SSIM), and Perceptual
Similarity (LPIPS) in the same way in Table 1. The quali-
tative results for the video-into-image steganography can be
confirmed in Fig. 3.

Errors APD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Cover 20.32 19.77 0.5191 0.5262
Secret 5.79 29.98 0.9263 0.1333

Table 1. Performance of the video-into-image steganography.
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Fig. 4. Qualitative results of audio-into-image steganography.
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Fig. 5. Qualitative results of shape-into-image steganography.

Audio-into-image steganography. For evaluation of re-
constructed audio, we report Absolute Error (AE) and Signal-
to-Noise Ratio (SNR) between the secret and revealed secret
instead of APD and PSNR in Table 2. In addition, the au-
dios of the secret and revealed secret are visualized as mel-
spectrograms in Fig. 4.

Errors APD/AE ↓ PSNR/SNR ↑ SSIM ↑ LPIPS ↓

Cover 13.73 23.33 0.7139 0.3948
Secret 2.84 17.92 0.9328 -

Table 2. Performance of the audio-into-image steganography.

Shape-into-image steganography. We experiment with
the proposed method on the shape-into-image steganogra-
phy to demonstrate that the proposed method has a signifi-
cantly broader scope of application than conventional deep
steganography methods, as 3D shapes are fundamentally
different from the data that previous deep steganography
methods attempted to conceal. In Fig. 5, we present the re-
constructed Stanford Bunny and Dragon from various view-
points.

Ablation study. We measure the performance difference
of video-into-image steganography depending on whether
QAT is applied or not. The experimental results in Table 3
show that when QAT is not applied, the revealed secret is very
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Fig. 6. Effectiveness of quantization-aware training.

altered from the original due to the weight shifts by quanti-
zation. We also present the visual effect of QAT through the
sample included in Fig. 6.

Errors APD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Cover w/o. QAT 19.17 20.37 0.5700 0.4785
Secret w/o. QAT 27.76 17.73 0.5094 0.4279
Cover w. QAT 20.32 19.77 0.5191 0.5262
Secret w. QAT 5.79 29.98 0.9263 0.1333

Table 3. Ablation study results on QAT.

3.3. Discussion and Future Work

Through our experiments, we show that it is possible to hide
secret data of various modalities with only subtle changes to
the cover image. However, there is a limitation that the for-
mat of cover data is fixed as an image, and there is some loss
in high-frequency information for revealed secret. Since this
paper introduces a steganography solution using INRs for the
first time, we believe that there is still room for improvement
and various applications. We also look forward to future work
to improve the robustness of the proposed approach against
container distortions such as blur or JPEG compression.

4. CONCLUSION

We proposed a novel approach to deep cross-modal steganog-
raphy utilizing INRs, which enables the hiding of data of di-
verse modalities within images. We believe that our proposed
method will stimulate further investigation, as it introduces a
fresh research direction for deep steganography.
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