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{prakash.chandra.chhipa, richa.upadhyay, kanjar.de, rajkumar.saini, marcus.liwicki}@ltu.se

c meechi-2@student.ltu.se
2 CCET, Punjab University, Chandigarh, India
{a co19342, b co20320, varungupta}@ccet.ac.in

3Human Interface Laboratory, Kyushu University, Fukuoka, Japan
uchida@ait.kyushu-u.ac.jp

*Corresponding author - prakash.chandra.chhipa@ltu.se

Abstract—This work investigates the unexplored usability of
self-supervised representation learning in the direction of func-
tional knowledge transfer. In this work, functional knowledge
transfer is achieved by joint optimization of self-supervised
learning pseudo task and supervised learning task, improving
supervised learning task performance. Recent progress in self-
supervised learning uses a large volume of data, which becomes
a constraint for its applications on small-scale datasets. This
work shares a simple yet effective joint training framework
that reinforces human-supervised task learning by learning self-
supervised representations just-in-time and vice versa. Experi-
ments on three public datasets from different visual domains,
Intel Image, CIFAR, and APTOS, reveal a consistent track of
performance improvements on classification tasks during joint
optimization. Qualitative analysis also supports the robustness
of learnt representations. Source code and trained models are
available on GitHub 1.

Index Terms—self-supervised learning, functional knowledge
transfer, joint training, representation learning, computer vision

I. INTRODUCTION

The concept of functional knowledge transfer [1] has been
explored for multi-task learning problems in computer vi-
sion [2]–[4] in the context of simultaneous training and joint
optimization of multiple tasks. Typically functional knowledge
transfer is employed for end-to-end joint training and opti-
mization of multiple supervised learning tasks. Representa-
tional knowledge transfer, where pretraining and downstream
task learning is done sequentially, has been thoroughly inves-
tigated and shown success in self-supervised learning. So far,
functional knowledge transfer in self-supervised learning has
not been studied, leaving a research gap.

This study uses functional knowledge transfer between
self-supervised representation learning and other supervised
downstream tasks. Figure 1 compares both knowledge transfer
approaches. The proposed method jointly optimizes contrastive
self-supervised learning with classification task learning on

1https://github.com/prakashchhipa/Functional Knowledge Transfer SSL

Fig. 1. Figure compares the proposed functional knowledge transfer approach
in context of self-supervised learning and supervised task learning with con-
ventional representational knowledge transfer approach where self-supervised
pretraining and supervised task learning is performed in sequential manner.

ResNet-50 [5] backbone, explored on three public datasets of
different visual domains, CIFAR10 [6], Intel Image [7], and
Aptos [8]. The proposed approach enhances supervised task
performance on all three datasets, supporting the hypothesis.
Quantitative and qualitative comparisons are made between
the proposed and conventional knowledge transfer approach.
The following are the main contributions of this work:

1) Explored functional knowledge transfer with self-
supervised representation learning towards making it ap-
plicable to the small-batch size and small-scale dataset.

2) Hypothesizes that self-supervised learning reinforces
supervised task learning and vice versa.

With these contributions, proposed approach improves super-
vised task performance on all three datasets, supported by
qualitative results and provide preliminary empirical support
for the hypothesis.
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II. RELATED WORK

Joint embedding architecture and method based self-
supervised learning has shown significant advances in label-
free representation learning paradigm. It is based on learning
similarity in transformed views of input images and the way it
learns robust features by avoiding collapsed representation it
is divided into several categories, e.g., i) Contrastive Methods
(SimCLR [9], MoCo [10]), ii) Distillation (BYOL [11], Sim-
Siam [12]), iii) Clustering (SwAV [13]), and (iv) Information
Maximization (Barlow Twins [14], VICReg [15]). All these
methods have explored the representational knowledge transfer
approach, where pretraining is performed, and learned param-
eters are transferred as knowledge to enable downstream tasks.
However, functional knowledge transfer and simultaneous
training are unexplored. Although some work has been carried
out to exploit the label details in self-supervised methods [16],
especially contrastive learning.

On the other side, multi-task learning [2]–[4], [17] has ex-
plored functional knowledge transfer by simultaneous training
procedures is their natural requirement and has shown progress
toward improved performance and computational efficiency.
Self-supervised learning approaches for functional knowledge
transfer are unexplored. It could make self-supervised al-
gorithms computationally efficient and adaptable to small
datasets by integrating with other learning tasks.

III. METHOD

The proposed method enables a specific type of inductive
transfer, called functional knowledge transfer [1] on self-
supervised representation learning approach by incorporat-
ing simultaneous training with downstream task learning.
Specifically, the proposed method employs the contrastive
learning method [9] for self-supervised representation learning
and classification as downstream tasks on multiple datasets,
CIFAR10 [6], Aptos [8], and Intel Image [7]. The following
section describes the method in detail.

Data D : (X,Y ) is set of input sample pair of (x, y) where
x ∈ Rd, is the input image data of d dimensions and y is
corresponding human-annotation from annotation space C. The
data is defined as D : {(x1, y1), ...(xn, yn)} ⊆ Rd × C.

A. Contrastive Self-supervised Learning

To define the joint embedding architecture and method
based self-supervised learning objective, followed in con-
trastive learning (SimCLR [9]), a set of K non-leanrable
transformations T : {tk}k∈K is defined, which are image
processing based augmentations, provides transformed views
of input image (x ′, x ′′), to retain the invariant feature
learning. Further, learnable function f : Rd → Rm param-
eterized by learnable parameters Θf which is Convolutional
Neural Network (CNN) backbone and another learnable func-
tion g : Rm → Rm̃ parameterized by learnable parameters
Θg which is projector network is defined. With that, Noise
contrastive estimation [18] based self-supervised contrastive

learning objective, NT-Xent (Normalized Temperature Scaled
Cross Entropy) loss is defined in Eq. 1.

LSSL =
∑

(x ′,x ′′)∈T (X)

− log
eA∑2|X|

k=1 1[k ̸=x ′]eB
(1)

A = (sim(g(Θg; f(Θf ;x
′)), g(Θg; f(Θf ;x

′′)))/τ) (2)

B = (sim(g(Θg; f(Θf ;x
′)), g(Θg; f(Θf ;x

k)))/τ) (3)

where, A defines similarity for positive pairs, B constitute
similarity for negative pairs with denominator part of Eq. 1,
and sim is cosine similarity and τ is temperature scale
parameter, and LSSL is contrastive loss.

B. Supervised Task Learning

Supervised learning objective for mentioned downstream
task of classification can be mentioned in terms of cross
entropy loss LCE , defined in Eq. 4.

LCE = − 1

|D|
∑

(x,y)∈D

∑
c∈C

yc log(f(Θ;xc)) (4)

C. Representational Knowledge Transfer

Representational Knowledge Transfer is extensively ex-
plored in self-supervised learning, not only in contrastive
learning but also in other self-supervised paradigms, i.e.,
distillation [11], [12] and information maximization [14], [15].
This type of knowledge transfer comprises two stages;

1) First stage is self-supervised pretraining of CNN back-
bone without requiring labels which learns invariant rep-
resentations of underlying visual concepts by similarity
learning, described in Eq. 1

2) Second stage is downstream supervised tasks learning
in which learnt representations from stage one is used
by initializing the learning parameters of CNN encoder,
and supervised training is performed accordance to the
task, e.g., classification, described in Eq. 4

The first part of Figure 1 symbolically depicts the process.

D. Functional Knowledge Transfer

Functional Knowledge Transfer in the context of self-
supervised learning is defined by jointly optimizing the self-
supervised learning objective with supervised task learning
objective. LFKT loss described in Eq. 5 is single stage process
where parameters learning is simultaneous and influenced by
both loss objectives in just-in-time manner. λ is parameter for
balancing losses, however kept 1 in all experiments.

LFKT = LCE + λ LSSL (5)

The second part of Figure 1 symbolically demonstrate the
process.
Analytical Reasoning: Functional Knowledge Transfer in con-
text of self-supervised learning with supervised task learning
is based on reinforced effects of tasks to each other. More
concretely, it is shown in Figure 3 and defined as:

• Invariant Features - Self-supervised learning objec-
tive shares invariant generalized descriminative features,



Fig. 2. Illustrates the Functional Knowledge Transfer where contrastive loss and cross entropy loss is computed on self-supervised and supervised tasks
respectively and jointly backpropagated, which enables simultaneous training.

Fig. 3. Demonstrate the bi-directional constructive reinforcements for
self-supervised learning and supervised task learning which enables self-
supervision on relatively smaller batch size and small-scale datasets and
improves classification performance.

which reinforces the task specific feature learning for
given human annotation

• Robust Semantics - Supervised task learning shares robust
semantic information (e.g., categorization, clusters of
similar concepts) of underlying visual concepts of image
backed by human knowledge, which reinforces similarity
learning of semantically similar visual concepts

This bi-directional constructive reinforcements improves learn-
ing of both the tasks, which can enable to learn contrastive
learning on relatively smaller batch sizes and smaller datasets
and improved performance for supervised downstream task,
shown in Figure 3.

IV. DATASETS

This study uses public datasets of natural geographic scenes,
atomic objects, and medical images to investigate functional
knowledge transfer on self-supervised representation learning
in diverse visual concepts. The Table I summarizes the three
datasets used in this work.

TABLE I
DATASETS

Dataest Image type No. of images No. of
Train Test classes

CIFAR-10 [6] singular objects 50000 10000 10
Intel Image [7] natural scenes 14034 3000 6

APTOS 2019 [8] retinal images 3263 399 5

V. EXPERIMENTAL DETAILS

To evaluate the applicability of contrastive self-supervised
learning method in functional knowledge transfer approach,
detailed experimentation was performed on three public

datasets, CIFAR10 [6], Intel Image [7], and Aptos [8] from
diverse visual domains. Functional knowledge transfer is em-
ployed by joint training of self-supervised (simCLR [9]) and
supervised task learning (classification) as mentioned in the
Section III. A comparative study is performed by bench-
marking the proposed approach to conventional approach
of representational knowledge transfer, where the model is
pretrained and then trained for the downstream task.

Methodological investigations are preferred; hence, com-
mon hyperparameters are configured for all three datasets
with both transfer knowledge approaches. To emphasize a
less compute-intensive approach, single GPU implementation
is preferred with ResNet-50 [5] backbone and batch size of
256 for contrastive learning, which is much smaller than the
original work. Due to this very reason, contrastive pretraining
on CIFAR is perfomed with batch size 256, which was
not available elsewhere. Pretraining, downstream task, and
joint training are configured for 100 epochs. Self-supervised
pretraining in both approaches uses LARS optimizer with
learning rate 0.001 temperature scale 0.5 and employs standard
augmentations suggested in the original work simCLR [9].
Supervised learning classification tasks in both approaches use
SGD optimizer with a learning rate 0.025. All the experiments
are repeated three times and the mean value of the performance
metric is reported with standard deviation.

VI. RESULTS AND DISCUSSIONS

Table II describes the multi-class classification performance
of the proposed approach by comparing it with the con-
ventional approach for all three datasets. A consistent im-
provement, up to 1.40%, is observed in accuracy for all
three datasets for the proposed functional knowledge transfer
approach. It is worth noting that all the results show negligible
standard deviation across several trial. The proposed approach
has improved performance over previous work on APTOS and
intel image datasets, also supported by qualitative analysis.
Important observations are briefly described as follows -

Functional Knowledge Transfer improves performance:
Results comparisons in Table II clearly show the inspiring
trend that functional transfer has improved the downstream



TABLE II
RESULTS FOR REPRESENTATIONAL TRANSFER (SEQUENTIALLY SSL

PRETRAINED THEN DOWNSTREAM TASK) AND FUNCTIONAL TRANSFER
(JOINT OPTIMIZATION OF SELF SUPERVISED PRETRAINED AND

DOWSNTREAM TASK) ON THREE DATASETS. A COMMON ARCHITECTURE
RESNET-50 IS EMPLOYED, AND SIMCLR CONTRASTIVE PRETRAINING

WITH BATCH SIZE OF 256 ONLY IS USED. $ - produced pretraining on batch
size 256 referring original work simCLR [9].

Dataset Method Accuracy Precision Recall

CIFAR10
Representational

Transfer $ 92.20±0.11 92.18±0.10 92.21±0.10

Functional
Transfer 93.60±0.10 93.62±0.13 93.59±0.11

Intel Image
Representational

Transfer 93.18±0.15 93.15±0.18 93.17±0.20

Functional
Transfer 93.70±0.13 93.33±0.11 93.31±0.11

Aptos 2019
Representational

Transfer 83.10±0.10 83.05±0.09 83.05±0.12

Functional
Transfer 83.32±0.11 83.14±0.10 83.04±0.10

TABLE III
ABLATION RESULTS FOR REPRESENTATIONAL TRANSFER AND

FUNCTIONAL TRANSFER ON INTEL IMAGE DATASET ON RESNET-18
BACKBONE. BATCH SIZE IS 256.

Dataset Method Accuracy Precision Recall

Intel
Image

Representational
Transfer 78.28±0.14 78.16±0.15 78.19±0.18

Functional
Transfer 78.52±0.13 78.38±0.14 78.43±0.12

task performance regardless of the dataset over the conven-
tional approach. It also outperforms previous works, using the
same ResNet-50 architecture and beyond, as shown in Figure 5
for APTOS and Intel Image datasets.

Functional Knowledge Transfer enables efficient self-
supervision: Enabling self-supervised learning on small-scale
datasets and smaller batch size is another significant outcome
for the functional knowledge transfer approach. It supports the
hypothesis mentioned in Figure 3 where both tasks reinforced
the efficiency to each other. However, more investigation is
required in efficiently fusing self-supervised and supervised
learning task loss objectives for even further improved perfor-
mance.

Functional Knowledge Transfer demonstrates compu-
tational efficiency: Representational knowledge transfer re-
quires 100 epochs of pretraining followed by 100 epochs of
downstream supervised task learning. In contrast, the func-
tional knowledge transfer approach performs better by joint
training for 100 epochs. Effectively, functional knowledge
transfer requires roughly half of computations or at-least saves
downstream task computation costs. It is also essential to eval-
uate the functional knowledge transfer for domain adaptation
and other transfer learning scenarios in future work because
self-supervised learning in representation knowledge transfer
intends to do the transfer learning.

Qualitative Robustness: Quantitative results and perfor-
mance are also supported by qualitative analysis shown
through class activation maps in Figure 4 for two datasets,
Intel Image and Aptos, where attention regions are displayed.

Fig. 4. Pretrained model, representational knowledge transfer, and functional
transfer approaches are compared for class activation maps (CAM). First
instance is from building category from intel image dataset, and second
instance is mild DR category from APTOS dataset. CAM not produced for
CIFAR10 dataset due to very small size of input.

Fig. 5. Comparison with previous works: Intel Image (top), Aptos retinopathy
fundus (bottom).

It clearly shows the ability to attend to the region of interest
to capture the essence of visual concepts in the images. When
compared to the pretrained and representational knowledge
transfer approaches, functional knowledge transfer demon-
strated very competitive and even more focused attention
region.

Ablation: Ablation study is performed on ResNet-18 back-
bone on Intel Image dataset (Table III), which shows marginal
improvement, which gives motivation to investigate further in
this direction.

VII. CONCLUSION

Functional knowledge transfer is explored on contrastive
self-supervised learning with classification tasks where ex-
citing performance improvement is depicted across multiple
public datasets. It has shown preliminary empirical support for
enabling contrastive self-supervised learning on small batches
and small-scale datasets by reinforcing the task during joint
training. This study strongly encourages further investiga-
tion of functional knowledge transfer using different self-
supervised learning paradigms and supervised learning tasks.
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