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ABSTRACT

Diffusion probabilistic models (DPM) have been widely
adopted in image-to-image translation to generate high-
quality images. Prior attempts at applying the DPM to image
super-resolution (SR) have shown that iteratively refining a
pure Gaussian noise with a conditional image using a U-Net
trained on denoising at various-level noises can help obtain
a satisfied high-resolution image for the low-resolution one.
To further improve the performance and simplify current
DPM-based super-resolution methods, we propose a sim-
ple but non-trivial DPM-based super-resolution post-process
framework,i.e., cDPMSR. After applying a pre-trained SR
model on the to-be-test LR image to provide the conditional
input, we adapt the standard DPM to conduct conditional
image generation and perform super-resolution through a de-
terministic iterative denoising process. Our method surpasses
prior attempts on both qualitative and quantitative results and
can generate more photo-realistic counterparts for the low-
resolution images with various benchmark datasets including
Set5, Set14, Urban100, BSD100, and Manga109. Code will
be published after accepted.

Index Terms— Diffusion Probabilistic Models, Image-
to-Image Translation, Conditional Image Generation, Image
Super-resolution.

1. INTRODUCTION
Over the years, single image super-resolution (SISR) has
drawn active attention due to its wide applications in com-
puter vision, such as object recognition, remote sensing, and
so on. SISR aims to obtain a high-resolution (HR) image
containing great details and textures from a low-resolution
(LR) image by an SR method, which is a classic ill-posed
inverse problem [1]. To establish the mapping between HR
and LR images, various CNN-based methods had been pro-
posed. Among them, methods based on the deep generative
model have become one of the mainstream, mainly including
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Fig. 1. Illustration of our method. The model contains a
stochastic forward diffusion process which gradually adds
noise to an IHR image. And a deterministic denoise process
is applied to recover high-resolution and realistic images ISR

corresponding to ILR images.

GAN-based [2, 3, 4] and flow-based methods [5, 6, 7], which
have shown convincing image generation ability.

GAN-based SISR methods [2, 3, 4] used a generator and
a discriminator in an adversarial way to encourage the gener-
ator to generate realistic images. Specifically, the generator
generates an SR result for the input, and the discriminator is
used to distinguish if the generated SR is true. It combines
content losses (e.g., L1 or L2) and adversarial losses to opti-
mize the whole training process. Due to their strong learning
abilities, GAN-based methods become popular for image SR
tasks [4, 8, 9]. However, these methods are easy to meet mode
collapse and the training process is hard to converge with
complex optimization [10, 11] and adversarial losses often in-
troduce artifacts in SR results, leading to large distortion [12,
13]. Another line of methods based on deep generative mod-
els is flow-based methods, which directly account for the ill-
posed problem with an invertible encoder [14, 15, 16, 17]. It
transforms a Gaussian distribution into an HR image space
instead of modeling one single output and inherently resolves
the pathology of the original ”one-to-many” SR problem. Op-
timized by a negative loglikelihood loss, these methods avoid
training instability but suffer from extremely large footprints
and high training costs due to the strong architectural con-
straints to keep the bijection between latents and data [16].

Lately, the adoptions of diffusion probabilistic models
(DPM) have shown promising results in image generative
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tasks [18]. Furthermore, the prior attempts [19, 16] at apply-
ing the DPM to image SR have also proved their effectiveness
for obtaining satisfied SR images. In [19], the authors propose
a two-stage SR framework. First, they design an SR structure
and pre-train it to obtain a conditional input for the DPM
process. Then they redesign the U-net in DPM. The training
process of this method is relatively complicated, and it does
not consider combining existing pre-trained SR models, such
as EDSR [20], RCAN [21], and SwinIR [22]. Similarly, [16]
apply the bicubic up-sampled LR image as the conditional
input directly. Different from them, our method leverage the
development of the current SISR methods to provide more
plausible conditional inputs. And we adapt a deterministic
sampling way in the inference phase to make the restoration
of the SR image better and faster.

Our work is most similar to [19] which is the first to apply
DPM to the SR task. In this work, we propose a simple but
non-trivial SR post-process framework for image SR based
on the conditional diffusion model,i.e., cDPMSR. Unlike the
existing techniques, our cDPMSR adopts the pre-trained SR
methods to provide the conditional input, which is more plau-
sible than the one used in [16, 19]. And it brings significant
improvement in perceptual quality over existing SOTA meth-
ods across multiple standard benchmarks. By simply con-
catenating a Gaussian noise and the conditional input and us-
ing MAE loss (i.e., L1 ) to optimize the diffusion model, our
method makes the training process more concise compared
with [16, 19]. Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose
an SR post-process framework based on the existing SR
models and diffusion probabilistic model.

• Compared to existing SOTA SR methods, our cDPMSR
achieves superior perceptive results and can generate
more photo-realistic SR results.

• Compared with existing DPM-based SR methods, our
cDPMSR adopts a deterministic sampling way in the
inference phase, which helps to obtain a better balance
between distortion and perceptual quality.

2. PROPOSED METHOD

Fig.1 illustrates the whole process of our cDPMSR. The fol-
lowing section introduces the method in detail.

2.1. Stocatic Diffusion Process

Given a SISR dataset (IHR, ILR) ∼ D, we adopt the diffu-
sion probabilistic model (DPM) [18, 23] to map a normal
Gaussian noise xT ∼ N (0,1) to a high-resolution image
IHR with a corresponding conditional image IC . We will
talk about the choice of the conditional image later. The DPM
contains latent variables x = {xt|t = 0, 1, ..., T}, where
x0 = IHR, xT = N (0,1). And it is defined on a noise
schedule αt and σt such that λt = α2

t /σ
2
t , the signal-to-noise-

ratio, is monotonically decreasing with t.

Forward stochastic diffusion process. We define the for-
ward process q(xt|IHR) := q(xt|x0) of DPM with a Gaus-
sian process by the Markovian structure:

q(xt|x0) = N (x0;αtx0, σ
2
t 1)

q(xt|xt−1) = N (xt; (αt/αt−1)xt−1, (1−
λt
λt−1

)σ2
t 1).

(1)
The forward process gradually adds noise into an image

x0 to generate latent variables x1, ...,xT for the original im-
age x0. With the Gaussian distribution reparameterization
trick, we can write the latent variable xt as:

xt = αtx0 + σtε, ε ∼ N (0,1). (2)

Following [18] we set αt = cos 0.5π t
T and σt =

√
1− α2

t .
Model training. The optimization target of DPM is de-
noising xt ∼ p(xt|x0) to get estimated x̂0 with a U-Net
fθ(xt, t, I

C) := x̂0 ≈ x0. Same with [18], we use the
following loss function to train the model:

L := Et,(x0,IC),ε[‖x0 − fθ(αtx0 + σtε, t, I
C)‖], (3)

where t is uniformly sampled between 1 and T . In [18, 23]
the above loss function is justified as optimizing the usual
variational bound on negative log-likelihood with discarding
the loss weighting. Here, different with [18] we add an addi-
tional input IC as the conditional image to guide the model
to keep the same content with IC during the denoising pro-
cess. And different from current DPM-based super-resolution
methods [16, 19] which reverses the diffusion process by es-
timating noise, we directly let the model predict the image.
Algorithm 1 cDPMSR
Training : train predictor fθ
Input: Dataset D, schedule αt, σt, timesteps T , pretrained super

resolution model φθ

1: repeat
2: (IHR, ILR) ∼ D, t ∼ Uniform({1, ..., T}),

ε ∼ N (0, I)
3: IC = φθ(I

LR)
4: xt = αtI

HR + σtε
5: Take a gradient descent step on

∇θ‖IHR − fθ(xt, t, IC)‖
6: until converged

Inference: super resolve ILR

Input: trained predictor fθ , pretrained super resolution model φθ

1: IC = φθ(I
LR)

2: xT ∼ N (0,1)
3: for t = T, ..., 1 do
4: ε ∼ N (0, I) if t > 1, else ε = 0
5: xt−1 = αt−1fθ(xt, t, I

C) + σt−1(xt − αtx̂0)/σt
6: end for

2.2. Deterministic Denoise Process

Trained model sampling. Different from [19, 16] sampling
via a stochastic way, we adopt a deterministic manner to con-
duct the reverse process pθ(xt−1|xt), which is an implicit
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Fig. 2. Qualitative comparison with SOTAs performed on ‘head’ from Set5 (×4 scale, best view in zoomed-in.)
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Fig. 3. Qualitative comparison with SOTAs performed on ‘img003 ’ from Urban100 (×4 scale. Cropped and zoomed in for a
better view.)
probabilistic model [24]. Compared with the sampling strat-
egy used in [19, 16], it can achieve higher quality images with
less inference time which is critical for this task. Given the
image xt at step t, we can write the generation process of
xt−1 via a forward posterior qθ(xt−1|xt, x̂0) as follows:

pθ(xt−1|xt) = qθ(xt−1|xt, x̂0)
= N (αt−1x̂θ(xt, t) + σt−1ẑ,0)

xt−1 = αt−1x̂θ(xt, t) + σt−1ẑ,

(4)

where x̂0 is predicted with fθ(xt, t, IC) and ẑ is the estimated
noise which can be calculated with Equation 2, ẑ = (xt −
αtx̂0)/σt. Integrating the above equation we have:

xt−1 = αt−1fθ(xt, t, I
C) + σt−1(xt − αtx̂0)/σt. (5)

Conditional image choice. To get realistic super-resolution
images, [19, 16] also introduced DPM with conditional de-
noising on a pre-trained feature extractor or a bicubic upsam-
pled image on low-resolution image. In this work, we lever-
age the power of the current development of SISR to provide a
better conditional image. Specifically, given a low-resolution
image ILR and a pre-trained super-resolution model φθ, we
generate our conditional image by IC = φθ(I

LR), which has
been proved to be more plausible for obtaining results with
better perceptual quality in ablation study 3.3. Algorithm 1
shows the whole process of our cDPMSR.

3. EXPERIMENTS

3.1. Experimental Settings

Implementation Details. We use 800 image pairs in DIV2K
as the training set. We take public benchmark datasets, i.e.,
Set5, Set14, Urnban100, BSD100, and Manga109 as the test
set to compare with other methods. For the diffusion model,
we set T = 1000 for training and T = 100 during infer-
ence time. We take the pre-trained super-resolution models
(SwinIR [22], EDSR [20], and RCAN [21]) to provide the
initial super-resolution image,i.e.the conditional input image.
The conditional diffusion model is trained with Adam opti-
mizer and batch size 16, learning rate 1×10−4 for 300k steps.
The architecture of the model is the same as the one in [16].

A note on metrics. The previous study has shown the dis-
tortion and perceptual quality are at odds with each other, and
there is a trade-off between them [25]. Since our work focuses
on the perceptual quality, except the distortion metrics: PSNR
and SSIM, we also provide perceptual metrics: LPIPS [26]
to show that our method can generate better perceptual re-
sults than other methods. LPIPS is recently introduced as a
reference-based image quality evaluation metric, which com-
putes the perceptual similarity between the ground truth and
the SR image.



Table 1. Results for 4×SR on Set5, Set14, BSD100, Urban100, and Manga109. The best three perceptual results are highlighted
in red, green, and blue colors, respectively. The bold represents the best distortion result among generative-based methods.

Method EDSR RCAN ESRGAN SwinIR SRFlow SRDiff SR3 Ours
EDSR+ RCAN+ SwinIR+

Set5
LPIPS↓ 0.0922 0.1096 0.0596 0.0899 0.0767 0.0770 0.1265 0.0619 0.0606 0.0564
PSNR↑ 32.43 32.64 30.46 32.69 28.35 30.94 27.31 30.78 30.84 31.03
SSIM↑ 0.8985 0.9002 0.8516 0.9018 0.8138 0.8738 0.7844 0.8684 0.8645 0.8676

Set14
LPIPS↓ 0.1445 0.1387 0.0867 0.1416 0.1318 0.1009 0.1531 0.0883 0.0865 0.0827
PSNR↑ 28.68 28.85 26.28 28.82 24.97 27.23 25.48 27.11 27.02 27.14
SSIM↑ 0.7883 0.7885 0.6980 0.7918 0.6908 0.7432 0.6889 0.7316 0.7257 0.7341

BSD100
LPIPS↓ 0.1517 0.1536 0.0834 0.1497 0.1831 0.1041 0.1392 0.0935 0.0953 0.0834
PSNR↑ 27.73 27.74 25.29 27.86 24.65 25.95 25.21 25.74 25.87 25.96
SSIM↑ 0.7425 0.7430 0.6495 0.7466 0.6573 0.6833 0.6498 0.6681 0.6706 0.6743

Urban100
LPIPS↓ 0.1251 0.1220 0.0944 0.1185 0.1279 0.1077 0.1993 0.0997 0.0997 0.0934
PSNR↑ 26.65 26.75 24.35 27.08 23.65 25.34 22.49 25.45 25.59 25.86
SSIM↑ 0.8036 0.8066 0.7327 0.8165 0.7312 0.7661 0.6336 0.7649 0.7681 0.7796

Manga109
LPIPS↓ 0.0628 0.0544 0.0420 0.0592 0.0660 0.0473 0.1427 0.0409 0.0396 0.0374
PSNR↑ 31.06 31.20 28.48 31.67 27.14 28.67 24.69 29.07 29.39 29.60
SSIM↑ 0.9160 0.9170 0.8595 0.9227 0.8244 0.8851 0.7568 0.8791 0.8816 0.8874

3.2. Quantitative and qualitative results

To verify the effectiveness of our cDPMSR, we select some
SOTA generative methods to conduct the comparative ex-
periments, including ESRGAN [2], SRFlow [5], SRDiff [19],
SR3 [16]. We selected EDSR [20], RCAN [21], and SwinIR [22]
to provide conditional input, respectively. Therefore, we re-
port three cases for our cDPMASR, i.e., EDSR+, RCAN+,
and SwinIR+. All the results are obtained by the provided
codes or from the publicized papers. As shown in Fig.2 and 3,
the results of EDSR, RCAN, and SwinIR are so smooth that
some details are missed. Because these methods are PSNR-
directed and they all focus on obtaining results with good
distortion [25] and they certainly got good PSNR results in
Tab.1. It seems the results generated by ESRGAN in Fig. 2
and 3 include more details than other methods, but it intro-
duces too many false artifacts compared to the ground truth.
And the results of SRflow seem a little noisy. With better
conditional input, our method exhibits superior performance
on both quantitative and qualitative results than SR3 [16].
Though SRdiff obtains comparable numeric results in Tab.1,
the visual results of our cDPMSR are closer to ground truths
(Especially, the forehead in Fig.2 and the plants in Fig.3).

Table 2. Results of ablation study for different conditional
inputs on BSD100. (4 × SR)

Method LR SR-RRDB ours
EDSR+ RCAN+ SwinIR+

LPIPS↓ 0.1412 0.1096 0.0935 0.0953 0.0834
PSNR↑ 24.35 25.01 25.74 25.87 25.96
SSIM↑ 0.6402 0.6589 0.6681 0.6706 0.6743

3.3. Ablation Study
Different conditional inputs. Here, we conduct experiments
to verify how different conditional inputs influence perfor-
mance. We adopt LR, SRs generated by EDSR, RCAN,

SR-EDSR (EDSR+)

SR-RCAN (RCAN+) SR-SwinIR (SwinIR+)

Bicubiced-LR

HR

SR-RRDB

Fig. 4. Visual results on ’69020’ from BSD100 under differ-
ent conditional inputs (×4 scale. Best view with zoomed-in.)

SwinIR, and the RRDB trained in [19] as the conditional
inputs to perform experiments, respectively. As shown in
Tab.2 and Fig.4, without any pre-processing, the result under
LR conditional performs worst in both quantitative and qual-
itative. After being pre-trained by RRDB, EDSR, RCAN,
SwinIR, the conditional inputs can restore more details,
which pushes our cDPMSR model gets better performance.

4. CONCLUSION

Our work revisits DPM in SR and reveals taking a pre-super-
resolved version for the given LR image as the conditional in-
put can help to achieve a better high-resolution image. Based
on this, we propose a simple but non-trivial DPM-based
super-resolution post-process framework,i.e., cDPMSR. By
taking a pre-super-resolved version of the given LR image and
adapting the standard DPM to perform super-resolution, our
cDPMSR improves both qualitative and quantitative results
and can generate more photo-realistic counterparts for the
low-resolution images on benchmark datasets (Set5, Set14,
Urban100, BSD100, Manga109). In the future, we will ex-
tend our cDPMSR to images with more complex degradation.
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